From 3b220c587207ebfe48e7bcc3634b403756877e90 Mon Sep 17 00:00:00 2001 From: Christian Merten Date: Tue, 17 Sep 2024 21:38:31 +0000 Subject: [PATCH] feat(RingTheory/StandardSmooth): ring isomorphisms are standard smooth (#16869) We show that any `R`-algebra `S` where `algebraMap R S` is bijective, is standard smooth by constructing an explicit submersive presentation. This contribution was created as part of the AIM workshop "Formalizing algebraic geometry" in June 2024. --- Mathlib/Algebra/MvPolynomial/Equiv.lean | 11 ++++ Mathlib/RingTheory/AlgebraicIndependent.lean | 6 +- Mathlib/RingTheory/Generators.lean | 12 ++++ Mathlib/RingTheory/Presentation.lean | 33 ++++++++++ Mathlib/RingTheory/Smooth/StandardSmooth.lean | 64 ++++++++++++++++++- 5 files changed, 120 insertions(+), 6 deletions(-) diff --git a/Mathlib/Algebra/MvPolynomial/Equiv.lean b/Mathlib/Algebra/MvPolynomial/Equiv.lean index a6350e2e62a69..7b6e4a464b071 100644 --- a/Mathlib/Algebra/MvPolynomial/Equiv.lean +++ b/Mathlib/Algebra/MvPolynomial/Equiv.lean @@ -196,6 +196,17 @@ def isEmptyAlgEquiv [he : IsEmpty σ] : MvPolynomial σ R ≃ₐ[R] R := ext i m exact IsEmpty.elim' he i) +variable {R S₁ σ} in +@[simp] +lemma aeval_injective_iff_of_isEmpty [IsEmpty σ] [CommSemiring S₁] [Algebra R S₁] {f : σ → S₁} : + Function.Injective (aeval f : MvPolynomial σ R →ₐ[R] S₁) ↔ + Function.Injective (algebraMap R S₁) := by + have : aeval f = (Algebra.ofId R S₁).comp (@isEmptyAlgEquiv R σ _ _).toAlgHom := by + ext i + exact IsEmpty.elim' ‹IsEmpty σ› i + rw [this, ← Injective.of_comp_iff' _ (@isEmptyAlgEquiv R σ _ _).bijective] + rfl + /-- The ring isomorphism between multivariable polynomials in no variables and the ground ring. -/ @[simps!] diff --git a/Mathlib/RingTheory/AlgebraicIndependent.lean b/Mathlib/RingTheory/AlgebraicIndependent.lean index b0e1db85e19c4..0e358adaa9418 100644 --- a/Mathlib/RingTheory/AlgebraicIndependent.lean +++ b/Mathlib/RingTheory/AlgebraicIndependent.lean @@ -82,11 +82,7 @@ theorem algebraicIndependent_iff_injective_aeval : @[simp] theorem algebraicIndependent_empty_type_iff [IsEmpty ι] : AlgebraicIndependent R x ↔ Injective (algebraMap R A) := by - have : aeval x = (Algebra.ofId R A).comp (@isEmptyAlgEquiv R ι _ _).toAlgHom := by - ext i - exact IsEmpty.elim' ‹IsEmpty ι› i - rw [AlgebraicIndependent, this, ← Injective.of_comp_iff' _ (@isEmptyAlgEquiv R ι _ _).bijective] - rfl + rw [algebraicIndependent_iff_injective_aeval, MvPolynomial.aeval_injective_iff_of_isEmpty] namespace AlgebraicIndependent diff --git a/Mathlib/RingTheory/Generators.lean b/Mathlib/RingTheory/Generators.lean index 8cd1cdb774bff..3ded91b21c690 100644 --- a/Mathlib/RingTheory/Generators.lean +++ b/Mathlib/RingTheory/Generators.lean @@ -106,6 +106,18 @@ def ofSurjective {vars} (val : vars → S) (h : Function.Surjective (aeval (R := σ' x := (h x).choose aeval_val_σ' x := (h x).choose_spec +/-- If `algebraMap R S` is surjective, the empty type generates `S`. -/ +noncomputable def ofSurjectiveAlgebraMap (h : Function.Surjective (algebraMap R S)) : + Generators.{w} R S := + ofSurjective PEmpty.elim <| fun s ↦ by + use C (h s).choose + simp [(h s).choose_spec] + +/-- The canonical generators for `R` as an `R`-algebra. -/ +noncomputable def id : Generators.{w} R R := ofSurjectiveAlgebraMap <| by + rw [id.map_eq_id] + exact RingHomSurjective.is_surjective + /-- Construct `Generators` from an assignment `I → S` such that `R[X] → S` is surjective. -/ noncomputable def ofAlgHom {I} (f : MvPolynomial I R →ₐ[R] S) (h : Function.Surjective f) : diff --git a/Mathlib/RingTheory/Presentation.lean b/Mathlib/RingTheory/Presentation.lean index b7d31cd531382..6de568a38eb2b 100644 --- a/Mathlib/RingTheory/Presentation.lean +++ b/Mathlib/RingTheory/Presentation.lean @@ -123,6 +123,39 @@ lemma finitePresentation_of_isFinite [P.IsFinite] : section Construction +/-- If `algebraMap R S` is bijective, the empty generators are a presentation with no relations. -/ +noncomputable def ofBijectiveAlgebraMap (h : Function.Bijective (algebraMap R S)) : + Presentation.{t, w} R S where + __ := Generators.ofSurjectiveAlgebraMap h.surjective + rels := PEmpty + relation := PEmpty.elim + span_range_relation_eq_ker := by + simp only [Set.range_eq_empty, Ideal.span_empty] + symm + rw [← RingHom.injective_iff_ker_eq_bot] + show Function.Injective (aeval PEmpty.elim) + rw [aeval_injective_iff_of_isEmpty] + exact h.injective + +instance ofBijectiveAlgebraMap_isFinite (h : Function.Bijective (algebraMap R S)) : + (ofBijectiveAlgebraMap.{t, w} h).IsFinite where + finite_vars := inferInstanceAs (Finite PEmpty.{w + 1}) + finite_rels := inferInstanceAs (Finite PEmpty.{t + 1}) + +lemma ofBijectiveAlgebraMap_dimension (h : Function.Bijective (algebraMap R S)) : + (ofBijectiveAlgebraMap h).dimension = 0 := by + show Nat.card PEmpty - Nat.card PEmpty = 0 + simp only [Nat.card_eq_fintype_card, Fintype.card_ofIsEmpty, le_refl, tsub_eq_zero_of_le] + +variable (R) in +/-- The canonical `R`-presentation of `R` with no generators and no relations. -/ +noncomputable def id : Presentation.{t, w} R R := ofBijectiveAlgebraMap Function.bijective_id + +instance : (id R).IsFinite := ofBijectiveAlgebraMap_isFinite (R := R) Function.bijective_id + +lemma id_dimension : (Presentation.id R).dimension = 0 := + ofBijectiveAlgebraMap_dimension (R := R) Function.bijective_id + section Localization variable (r : R) [IsLocalization.Away r S] diff --git a/Mathlib/RingTheory/Smooth/StandardSmooth.lean b/Mathlib/RingTheory/Smooth/StandardSmooth.lean index 33b0d6650afea..67da17a5eccf5 100644 --- a/Mathlib/RingTheory/Smooth/StandardSmooth.lean +++ b/Mathlib/RingTheory/Smooth/StandardSmooth.lean @@ -89,7 +89,7 @@ in June 2024. universe t t' w w' u v -open TensorProduct +open TensorProduct Classical variable (n : ℕ) @@ -167,6 +167,33 @@ lemma jacobiMatrix_apply (i j : P.rels) : end Matrix +section Constructions + +/-- If `algebraMap R S` is bijective, the empty generators are a pre-submersive +presentation with no relations. -/ +noncomputable def ofBijectiveAlgebraMap (h : Function.Bijective (algebraMap R S)) : + PreSubmersivePresentation.{t, w} R S where + toPresentation := Presentation.ofBijectiveAlgebraMap.{t, w} h + map := PEmpty.elim + map_inj (a b : PEmpty) h := by contradiction + relations_finite := inferInstanceAs (Finite PEmpty.{t + 1}) + +instance (h : Function.Bijective (algebraMap R S)) : Fintype (ofBijectiveAlgebraMap h).vars := + inferInstanceAs (Fintype PEmpty) + +instance (h : Function.Bijective (algebraMap R S)) : Fintype (ofBijectiveAlgebraMap h).rels := + inferInstanceAs (Fintype PEmpty) + +lemma ofBijectiveAlgebraMap_jacobian (h : Function.Bijective (algebraMap R S)) : + (ofBijectiveAlgebraMap h).jacobian = 1 := by + have : (algebraMap (ofBijectiveAlgebraMap h).Ring S).mapMatrix + (ofBijectiveAlgebraMap h).jacobiMatrix = 1 := by + ext (i j : PEmpty) + contradiction + rw [jacobian_eq_jacobiMatrix_det, RingHom.map_det, this, Matrix.det_one] + +end Constructions + end PreSubmersivePresentation /-- @@ -180,6 +207,31 @@ structure SubmersivePresentation extends PreSubmersivePresentation.{t, w} R S wh attribute [instance] SubmersivePresentation.isFinite +namespace SubmersivePresentation + +open PreSubmersivePresentation + +section Constructions + +variable {R S} in +/-- If `algebraMap R S` is bijective, the empty generators are a submersive +presentation with no relations. -/ +noncomputable def ofBijectiveAlgebraMap (h : Function.Bijective (algebraMap R S)) : + SubmersivePresentation.{t, w} R S where + __ := PreSubmersivePresentation.ofBijectiveAlgebraMap.{t, w} h + jacobian_isUnit := by + rw [ofBijectiveAlgebraMap_jacobian] + exact isUnit_one + isFinite := Presentation.ofBijectiveAlgebraMap_isFinite h + +/-- The canonical submersive `R`-presentation of `R` with no generators and no relations. -/ +noncomputable def id : SubmersivePresentation.{t, w} R R := + ofBijectiveAlgebraMap Function.bijective_id + +end Constructions + +end SubmersivePresentation + /-- An `R`-algebra `S` is called standard smooth, if there exists a submersive presentation. @@ -211,6 +263,16 @@ lemma IsStandardSmoothOfRelativeDimension.isStandardSmooth IsStandardSmooth.{t, w} R S := ⟨‹IsStandardSmoothOfRelativeDimension n R S›.out.nonempty⟩ +lemma IsStandardSmoothOfRelativeDimension.of_algebraMap_bijective + (h : Function.Bijective (algebraMap R S)) : + IsStandardSmoothOfRelativeDimension.{t, w} 0 R S := + ⟨SubmersivePresentation.ofBijectiveAlgebraMap h, Presentation.ofBijectiveAlgebraMap_dimension h⟩ + +variable (R) in +instance IsStandardSmoothOfRelativeDimension.id : + IsStandardSmoothOfRelativeDimension.{t, w} 0 R R := + IsStandardSmoothOfRelativeDimension.of_algebraMap_bijective Function.bijective_id + end Algebra namespace RingHom