diff --git a/Mathlib/Analysis/InnerProductSpace/OfNorm.lean b/Mathlib/Analysis/InnerProductSpace/OfNorm.lean index 2616c07526d0b..48732656917c7 100644 --- a/Mathlib/Analysis/InnerProductSpace/OfNorm.lean +++ b/Mathlib/Analysis/InnerProductSpace/OfNorm.lean @@ -269,7 +269,7 @@ private theorem real_prop (r : ℝ) : innerProp' E (r : 𝕜) := by intro x y revert r rw [← Function.funext_iff] - refine Rat.denseEmbedding_coe_real.dense.equalizer ?_ ?_ (funext fun X => ?_) + refine Rat.isDenseEmbedding_coe_real.dense.equalizer ?_ ?_ (funext fun X => ?_) · exact (continuous_ofReal.smul continuous_const).inner_ continuous_const · exact (continuous_conj.comp continuous_ofReal).mul continuous_const · simp only [Function.comp_apply, RCLike.ofReal_ratCast, rat_prop _ _] diff --git a/Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean b/Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean index d2aa0a504c720..29f9a7d7b2d9b 100644 --- a/Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean +++ b/Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean @@ -23,7 +23,7 @@ by a sequence of simple functions. measurable and `Memℒp` (for `p < ∞`), then the simple functions `SimpleFunc.approxOn f hf s 0 h₀ n` may be considered as elements of `Lp E p μ`, and they tend in Lᵖ to `f`. -* `Lp.simpleFunc.denseEmbedding`: the embedding `coeToLp` of the `Lp` simple functions into +* `Lp.simpleFunc.isDenseEmbedding`: the embedding `coeToLp` of the `Lp` simple functions into `Lp` is dense. * `Lp.simpleFunc.induction`, `Lp.induction`, `Memℒp.induction`, `Integrable.induction`: to prove a predicate for all elements of one of these classes of functions, it suffices to check that it @@ -685,10 +685,10 @@ protected theorem uniformEmbedding : UniformEmbedding ((↑) : Lp.simpleFunc E p protected theorem uniformInducing : UniformInducing ((↑) : Lp.simpleFunc E p μ → Lp E p μ) := simpleFunc.uniformEmbedding.toUniformInducing -protected theorem denseEmbedding (hp_ne_top : p ≠ ∞) : - DenseEmbedding ((↑) : Lp.simpleFunc E p μ → Lp E p μ) := by +lemma isDenseEmbedding (hp_ne_top : p ≠ ∞) : + IsDenseEmbedding ((↑) : Lp.simpleFunc E p μ → Lp E p μ) := by borelize E - apply simpleFunc.uniformEmbedding.denseEmbedding + apply simpleFunc.uniformEmbedding.isDenseEmbedding intro f rw [mem_closure_iff_seq_limit] have hfi' : Memℒp f p μ := Lp.memℒp f @@ -703,9 +703,12 @@ protected theorem denseEmbedding (hp_ne_top : p ≠ ∞) : convert SimpleFunc.tendsto_approxOn_range_Lp hp_ne_top (Lp.stronglyMeasurable f).measurable hfi' rw [toLp_coeFn f (Lp.memℒp f)] +@[deprecated (since := "2024-09-30")] +alias denseEmbedding := isDenseEmbedding + protected theorem isDenseInducing (hp_ne_top : p ≠ ∞) : IsDenseInducing ((↑) : Lp.simpleFunc E p μ → Lp E p μ) := - (simpleFunc.denseEmbedding hp_ne_top).toIsDenseInducing + (simpleFunc.isDenseEmbedding hp_ne_top).toIsDenseInducing protected theorem denseRange (hp_ne_top : p ≠ ∞) : DenseRange ((↑) : Lp.simpleFunc E p μ → Lp E p μ) := diff --git a/Mathlib/NumberTheory/Liouville/Residual.lean b/Mathlib/NumberTheory/Liouville/Residual.lean index 4d72a848d850a..38feb5335e927 100644 --- a/Mathlib/NumberTheory/Liouville/Residual.lean +++ b/Mathlib/NumberTheory/Liouville/Residual.lean @@ -53,7 +53,7 @@ theorem setOf_liouville_eq_irrational_inter_iInter_iUnion : theorem eventually_residual_liouville : ∀ᶠ x in residual ℝ, Liouville x := by rw [Filter.Eventually, setOf_liouville_eq_irrational_inter_iInter_iUnion] refine eventually_residual_irrational.and ?_ - refine residual_of_dense_Gδ ?_ (Rat.denseEmbedding_coe_real.dense.mono ?_) + refine residual_of_dense_Gδ ?_ (Rat.isDenseEmbedding_coe_real.dense.mono ?_) · exact .iInter fun n => IsOpen.isGδ <| isOpen_iUnion fun a => isOpen_iUnion fun b => isOpen_iUnion fun _hb => isOpen_ball · rintro _ ⟨r, rfl⟩ diff --git a/Mathlib/Topology/Algebra/UniformField.lean b/Mathlib/Topology/Algebra/UniformField.lean index 59733a4968e23..27cc2841c5eb2 100644 --- a/Mathlib/Topology/Algebra/UniformField.lean +++ b/Mathlib/Topology/Algebra/UniformField.lean @@ -111,7 +111,7 @@ theorem coe_inv (x : K) : (x : hat K)⁻¹ = ((x⁻¹ : K) : hat K) := by · conv_lhs => dsimp [Inv.inv] rw [if_neg] · exact hatInv_extends h - · exact fun H => h (denseEmbedding_coe.inj H) + · exact fun H => h (isDenseEmbedding_coe.inj H) variable [UniformAddGroup K] diff --git a/Mathlib/Topology/Compactification/OnePoint.lean b/Mathlib/Topology/Compactification/OnePoint.lean index cb7d3c40f534c..ffe89b1a9a2a8 100644 --- a/Mathlib/Topology/Compactification/OnePoint.lean +++ b/Mathlib/Topology/Compactification/OnePoint.lean @@ -426,9 +426,12 @@ theorem denseRange_coe [NoncompactSpace X] : DenseRange ((↑) : X → OnePoint rw [DenseRange, ← compl_infty] exact dense_compl_singleton _ -theorem denseEmbedding_coe [NoncompactSpace X] : DenseEmbedding ((↑) : X → OnePoint X) := +theorem isDenseEmbedding_coe [NoncompactSpace X] : IsDenseEmbedding ((↑) : X → OnePoint X) := { openEmbedding_coe with dense := denseRange_coe } +@[deprecated (since := "2024-09-30")] +alias denseEmbedding_coe := isDenseEmbedding_coe + @[simp, norm_cast] theorem specializes_coe {x y : X} : (x : OnePoint X) ⤳ y ↔ x ⤳ y := openEmbedding_coe.toInducing.specializes_iff @@ -507,7 +510,7 @@ example [WeaklyLocallyCompactSpace X] [T2Space X] : T4Space (OnePoint X) := infe /-- If `X` is not a compact space, then `OnePoint X` is a connected space. -/ instance [PreconnectedSpace X] [NoncompactSpace X] : ConnectedSpace (OnePoint X) where - toPreconnectedSpace := denseEmbedding_coe.toIsDenseInducing.preconnectedSpace + toPreconnectedSpace := isDenseEmbedding_coe.toIsDenseInducing.preconnectedSpace toNonempty := inferInstance /-- If `X` is an infinite type with discrete topology (e.g., `ℕ`), then the identity map from diff --git a/Mathlib/Topology/DenseEmbedding.lean b/Mathlib/Topology/DenseEmbedding.lean index 78c6173ce6866..84bfa9ec96c78 100644 --- a/Mathlib/Topology/DenseEmbedding.lean +++ b/Mathlib/Topology/DenseEmbedding.lean @@ -11,9 +11,9 @@ import Mathlib.Topology.Bases This file defines three properties of functions: -* `DenseRange f` means `f` has dense image; -* `IsDenseInducing i` means `i` is also `Inducing`, namely it induces the topology on its codomain; -* `DenseEmbedding e` means `e` is further an `Embedding`, namely it is injective and `Inducing`. +* `DenseRange f` means `f` has dense image; +* `IsDenseInducing i` means `i` is also `Inducing`, namely it induces the topology on its codomain; +* `IsDenseEmbedding e` means `e` is further an `Embedding`, namely it is injective and `Inducing`. The main theorem `continuous_extend` gives a criterion for a function `f : X → Z` to a T₃ space Z to extend along a dense embedding @@ -202,37 +202,40 @@ theorem mk' (i : α → β) (c : Continuous i) (dense : ∀ x, x ∈ closure (ra end IsDenseInducing /-- A dense embedding is an embedding with dense image. -/ -structure DenseEmbedding [TopologicalSpace α] [TopologicalSpace β] (e : α → β) extends +structure IsDenseEmbedding [TopologicalSpace α] [TopologicalSpace β] (e : α → β) extends IsDenseInducing e : Prop where /-- A dense embedding is injective. -/ inj : Function.Injective e -theorem DenseEmbedding.mk' [TopologicalSpace α] [TopologicalSpace β] (e : α → β) (c : Continuous e) +lemma IsDenseEmbedding.mk' [TopologicalSpace α] [TopologicalSpace β] (e : α → β) (c : Continuous e) (dense : DenseRange e) (inj : Function.Injective e) - (H : ∀ (a : α), ∀ s ∈ 𝓝 a, ∃ t ∈ 𝓝 (e a), ∀ b, e b ∈ t → b ∈ s) : DenseEmbedding e := + (H : ∀ (a : α), ∀ s ∈ 𝓝 a, ∃ t ∈ 𝓝 (e a), ∀ b, e b ∈ t → b ∈ s) : IsDenseEmbedding e := { IsDenseInducing.mk' e c dense H with inj } -namespace DenseEmbedding +@[deprecated (since := "2024-09-30")] +alias DenseEmbedding.mk' := IsDenseEmbedding.mk' + +namespace IsDenseEmbedding open TopologicalSpace variable [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ] variable {e : α → β} -theorem inj_iff (de : DenseEmbedding e) {x y} : e x = e y ↔ x = y := +theorem inj_iff (de : IsDenseEmbedding e) {x y} : e x = e y ↔ x = y := de.inj.eq_iff -theorem to_embedding (de : DenseEmbedding e) : Embedding e := +theorem to_embedding (de : IsDenseEmbedding e) : Embedding e := { induced := de.induced inj := de.inj } -/-- If the domain of a `DenseEmbedding` is a separable space, then so is its codomain. -/ -protected theorem separableSpace [SeparableSpace α] (de : DenseEmbedding e) : SeparableSpace β := +/-- If the domain of a `IsDenseEmbedding` is a separable space, then so is its codomain. -/ +protected theorem separableSpace [SeparableSpace α] (de : IsDenseEmbedding e) : SeparableSpace β := de.toIsDenseInducing.separableSpace /-- The product of two dense embeddings is a dense embedding. -/ -protected theorem prod {e₁ : α → β} {e₂ : γ → δ} (de₁ : DenseEmbedding e₁) - (de₂ : DenseEmbedding e₂) : DenseEmbedding fun p : α × γ => (e₁ p.1, e₂ p.2) := +protected theorem prod {e₁ : α → β} {e₂ : γ → δ} (de₁ : IsDenseEmbedding e₁) + (de₂ : IsDenseEmbedding e₂) : IsDenseEmbedding fun p : α × γ => (e₁ p.1, e₂ p.2) := { de₁.toIsDenseInducing.prod de₂.toIsDenseInducing with inj := de₁.inj.prodMap de₂.inj } @@ -242,8 +245,8 @@ def subtypeEmb {α : Type*} (p : α → Prop) (e : α → β) (x : { x // p x }) { x // x ∈ closure (e '' { x | p x }) } := ⟨e x, subset_closure <| mem_image_of_mem e x.prop⟩ -protected theorem subtype (de : DenseEmbedding e) (p : α → Prop) : - DenseEmbedding (subtypeEmb p e) := +protected theorem subtype (de : IsDenseEmbedding e) (p : α → Prop) : + IsDenseEmbedding (subtypeEmb p e) := { dense := dense_iff_closure_eq.2 <| by ext ⟨x, hx⟩ @@ -255,18 +258,24 @@ protected theorem subtype (de : DenseEmbedding e) (p : α → Prop) : simp [subtypeEmb, nhds_subtype_eq_comap, de.toInducing.nhds_eq_comap, comap_comap, Function.comp_def] } -theorem dense_image (de : DenseEmbedding e) {s : Set α} : Dense (e '' s) ↔ Dense s := +theorem dense_image (de : IsDenseEmbedding e) {s : Set α} : Dense (e '' s) ↔ Dense s := de.toIsDenseInducing.dense_image -end DenseEmbedding - -theorem denseEmbedding_id {α : Type*} [TopologicalSpace α] : DenseEmbedding (id : α → α) := +protected lemma id {α : Type*} [TopologicalSpace α] : IsDenseEmbedding (id : α → α) := { embedding_id with dense := denseRange_id } -theorem Dense.denseEmbedding_val [TopologicalSpace α] {s : Set α} (hs : Dense s) : - DenseEmbedding ((↑) : s → α) := +end IsDenseEmbedding + +@[deprecated (since := "2024-09-30")] +alias denseEmbedding_id := IsDenseEmbedding.id + +theorem Dense.isDenseEmbedding_val [TopologicalSpace α] {s : Set α} (hs : Dense s) : + IsDenseEmbedding ((↑) : s → α) := { embedding_subtype_val with dense := hs.denseRange_val } +@[deprecated (since := "2024-09-30")] +alias Dense.denseEmbedding_val := Dense.isDenseEmbedding_val + theorem isClosed_property [TopologicalSpace β] {e : α → β} {p : β → Prop} (he : DenseRange e) (hp : IsClosed { x | p x }) (h : ∀ a, p (e a)) : ∀ b, p b := have : univ ⊆ { b | p b } := diff --git a/Mathlib/Topology/Homeomorph.lean b/Mathlib/Topology/Homeomorph.lean index bc14d3525fda0..228d23d3112d8 100644 --- a/Mathlib/Topology/Homeomorph.lean +++ b/Mathlib/Topology/Homeomorph.lean @@ -308,9 +308,12 @@ protected theorem t2Space [T2Space X] (h : X ≃ₜ Y) : T2Space Y := protected theorem t3Space [T3Space X] (h : X ≃ₜ Y) : T3Space Y := h.symm.embedding.t3Space -protected theorem denseEmbedding (h : X ≃ₜ Y) : DenseEmbedding h := +theorem isDenseEmbedding (h : X ≃ₜ Y) : IsDenseEmbedding h := { h.embedding with dense := h.surjective.denseRange } +@[deprecated (since := "2024-09-30")] +alias denseEmbedding := isDenseEmbedding + @[simp] theorem isOpen_preimage (h : X ≃ₜ Y) {s : Set Y} : IsOpen (h ⁻¹' s) ↔ IsOpen s := h.quotientMap.isOpen_preimage @@ -901,7 +904,10 @@ protected lemma quotientMap : QuotientMap f := (hf.homeomorph f).quotientMap protected lemma embedding : Embedding f := (hf.homeomorph f).embedding protected lemma openEmbedding : OpenEmbedding f := (hf.homeomorph f).openEmbedding protected lemma closedEmbedding : ClosedEmbedding f := (hf.homeomorph f).closedEmbedding -protected lemma denseEmbedding : DenseEmbedding f := (hf.homeomorph f).denseEmbedding +lemma isDenseEmbedding : IsDenseEmbedding f := (hf.homeomorph f).isDenseEmbedding + +@[deprecated (since := "2024-09-30")] +alias denseEmbedding := isDenseEmbedding end IsHomeomorph diff --git a/Mathlib/Topology/Instances/Complex.lean b/Mathlib/Topology/Instances/Complex.lean index 8cfe0e613fcb3..6b8e3c0862a14 100644 --- a/Mathlib/Topology/Instances/Complex.lean +++ b/Mathlib/Topology/Instances/Complex.lean @@ -39,7 +39,7 @@ theorem Complex.subfield_eq_of_closed {K : Subfield ℂ} (hc : IsClosed (K : Set simp only [Function.comp_apply, ofReal_ratCast, SetLike.mem_coe, SubfieldClass.ratCast_mem] nth_rw 1 [range_comp] refine subset_trans ?_ (image_closure_subset_closure_image continuous_ofReal) - rw [DenseRange.closure_range Rat.denseEmbedding_coe_real.dense] + rw [DenseRange.closure_range Rat.isDenseEmbedding_coe_real.dense] simp only [image_univ] rfl @@ -106,7 +106,7 @@ theorem Complex.uniformContinuous_ringHom_eq_id_or_conj (K : Subfield ℂ) {ψ : simp only [id, Set.image_id'] rfl ⟩ convert DenseRange.comp (Function.Surjective.denseRange _) - (DenseEmbedding.subtype denseEmbedding_id (K : Set ℂ)).dense (by continuity : Continuous j) + (IsDenseEmbedding.id.subtype (K : Set ℂ)).dense (by continuity : Continuous j) rintro ⟨y, hy⟩ use ⟨y, by diff --git a/Mathlib/Topology/Instances/Rat.lean b/Mathlib/Topology/Instances/Rat.lean index 1fd5e8eaa6966..22cc2d6c6f682 100644 --- a/Mathlib/Topology/Instances/Rat.lean +++ b/Mathlib/Topology/Instances/Rat.lean @@ -33,11 +33,14 @@ theorem uniformContinuous_coe_real : UniformContinuous ((↑) : ℚ → ℝ) := theorem uniformEmbedding_coe_real : UniformEmbedding ((↑) : ℚ → ℝ) := uniformEmbedding_comap Rat.cast_injective -theorem denseEmbedding_coe_real : DenseEmbedding ((↑) : ℚ → ℝ) := - uniformEmbedding_coe_real.denseEmbedding Rat.denseRange_cast +theorem isDenseEmbedding_coe_real : IsDenseEmbedding ((↑) : ℚ → ℝ) := + uniformEmbedding_coe_real.isDenseEmbedding Rat.denseRange_cast + +@[deprecated (since := "2024-09-30")] +alias denseEmbedding_coe_real := isDenseEmbedding_coe_real theorem embedding_coe_real : Embedding ((↑) : ℚ → ℝ) := - denseEmbedding_coe_real.to_embedding + isDenseEmbedding_coe_real.to_embedding theorem continuous_coe_real : Continuous ((↑) : ℚ → ℝ) := uniformContinuous_coe_real.continuous diff --git a/Mathlib/Topology/Instances/RatLemmas.lean b/Mathlib/Topology/Instances/RatLemmas.lean index 16c498e04a27f..69619e025121f 100644 --- a/Mathlib/Topology/Instances/RatLemmas.lean +++ b/Mathlib/Topology/Instances/RatLemmas.lean @@ -39,7 +39,7 @@ namespace Rat variable {p q : ℚ} {s t : Set ℚ} theorem interior_compact_eq_empty (hs : IsCompact s) : interior s = ∅ := - denseEmbedding_coe_real.toIsDenseInducing.interior_compact_eq_empty dense_irrational hs + isDenseEmbedding_coe_real.toIsDenseInducing.interior_compact_eq_empty dense_irrational hs theorem dense_compl_compact (hs : IsCompact s) : Dense sᶜ := interior_eq_empty_iff_dense_compl.1 (interior_compact_eq_empty hs) diff --git a/Mathlib/Topology/Instances/RealVectorSpace.lean b/Mathlib/Topology/Instances/RealVectorSpace.lean index a7eaa801c1d9f..5d4327d792021 100644 --- a/Mathlib/Topology/Instances/RealVectorSpace.lean +++ b/Mathlib/Topology/Instances/RealVectorSpace.lean @@ -23,7 +23,7 @@ theorem map_real_smul {G} [FunLike G E F] [AddMonoidHomClass G E F] (f : G) (hf (c : ℝ) (x : E) : f (c • x) = c • f x := suffices (fun c : ℝ => f (c • x)) = fun c : ℝ => c • f x from congr_fun this c - Rat.denseEmbedding_coe_real.dense.equalizer (hf.comp <| continuous_id.smul continuous_const) + Rat.isDenseEmbedding_coe_real.dense.equalizer (hf.comp <| continuous_id.smul continuous_const) (continuous_id.smul continuous_const) (funext fun r => map_ratCast_smul f ℝ ℝ r x) namespace AddMonoidHom diff --git a/Mathlib/Topology/StoneCech.lean b/Mathlib/Topology/StoneCech.lean index 240f69c279ec2..3beed85e1b698 100644 --- a/Mathlib/Topology/StoneCech.lean +++ b/Mathlib/Topology/StoneCech.lean @@ -154,10 +154,13 @@ theorem isDenseInducing_pure : @IsDenseInducing _ _ ⊥ _ (pure : α → Ultrafi -- The following refined version will never be used /-- `pure : α → Ultrafilter α` defines a dense embedding of `α` in `Ultrafilter α`. -/ -theorem denseEmbedding_pure : @DenseEmbedding _ _ ⊥ _ (pure : α → Ultrafilter α) := +theorem isDenseEmbedding_pure : @IsDenseEmbedding _ _ ⊥ _ (pure : α → Ultrafilter α) := letI : TopologicalSpace α := ⊥ { isDenseInducing_pure with inj := ultrafilter_pure_injective } +@[deprecated (since := "2024-09-30")] +alias denseEmbedding_pure := isDenseEmbedding_pure + end Embedding section Extension diff --git a/Mathlib/Topology/UniformSpace/CompareReals.lean b/Mathlib/Topology/UniformSpace/CompareReals.lean index 709fc27902447..7a90e73b4afcc 100644 --- a/Mathlib/Topology/UniformSpace/CompareReals.lean +++ b/Mathlib/Topology/UniformSpace/CompareReals.lean @@ -73,7 +73,7 @@ def rationalCauSeqPkg : @AbstractCompletion ℚ <| (@AbsoluteValue.abs ℚ _).un (uniformInducing := by rw [Rat.uniformSpace_eq] exact Rat.uniformEmbedding_coe_real.toUniformInducing) - (dense := Rat.denseEmbedding_coe_real.dense) + (dense := Rat.isDenseEmbedding_coe_real.dense) namespace CompareReals diff --git a/Mathlib/Topology/UniformSpace/Completion.lean b/Mathlib/Topology/UniformSpace/Completion.lean index b038f0744d751..0f386364453d4 100644 --- a/Mathlib/Topology/UniformSpace/Completion.lean +++ b/Mathlib/Topology/UniformSpace/Completion.lean @@ -183,12 +183,15 @@ theorem denseRange_pureCauchy : DenseRange (pureCauchy : α → CauchyFilter α) theorem isDenseInducing_pureCauchy : IsDenseInducing (pureCauchy : α → CauchyFilter α) := uniformInducing_pureCauchy.isDenseInducing denseRange_pureCauchy -theorem denseEmbedding_pureCauchy : DenseEmbedding (pureCauchy : α → CauchyFilter α) := - uniformEmbedding_pureCauchy.denseEmbedding denseRange_pureCauchy +theorem isDenseEmbedding_pureCauchy : IsDenseEmbedding (pureCauchy : α → CauchyFilter α) := + uniformEmbedding_pureCauchy.isDenseEmbedding denseRange_pureCauchy + +@[deprecated (since := "2024-09-30")] +alias denseEmbedding_pureCauchy := isDenseEmbedding_pureCauchy theorem nonempty_cauchyFilter_iff : Nonempty (CauchyFilter α) ↔ Nonempty α := by constructor <;> rintro ⟨c⟩ - · have := eq_univ_iff_forall.1 denseEmbedding_pureCauchy.toIsDenseInducing.closure_range c + · have := eq_univ_iff_forall.1 isDenseEmbedding_pureCauchy.toIsDenseInducing.closure_range c obtain ⟨_, ⟨_, a, _⟩⟩ := mem_closure_iff.1 this _ isOpen_univ trivial exact ⟨a⟩ · exact ⟨pureCauchy c⟩ @@ -377,9 +380,12 @@ open TopologicalSpace instance separableSpace_completion [SeparableSpace α] : SeparableSpace (Completion α) := Completion.isDenseInducing_coe.separableSpace -theorem denseEmbedding_coe [T0Space α] : DenseEmbedding ((↑) : α → Completion α) := +theorem isDenseEmbedding_coe [T0Space α] : IsDenseEmbedding ((↑) : α → Completion α) := { isDenseInducing_coe with inj := separated_pureCauchy_injective } +@[deprecated (since := "2024-09-30")] +alias denseEmbedding_coe := isDenseEmbedding_coe + theorem denseRange_coe₂ : DenseRange fun x : α × β => ((x.1 : Completion α), (x.2 : Completion β)) := denseRange_coe.prod_map denseRange_coe diff --git a/Mathlib/Topology/UniformSpace/UniformEmbedding.lean b/Mathlib/Topology/UniformSpace/UniformEmbedding.lean index 9029d071993e6..048ea735a5df4 100644 --- a/Mathlib/Topology/UniformSpace/UniformEmbedding.lean +++ b/Mathlib/Topology/UniformSpace/UniformEmbedding.lean @@ -219,10 +219,13 @@ protected theorem UniformEmbedding.embedding {f : α → β} (h : UniformEmbeddi { toInducing := h.toUniformInducing.inducing inj := h.inj } -theorem UniformEmbedding.denseEmbedding {f : α → β} (h : UniformEmbedding f) (hd : DenseRange f) : - DenseEmbedding f := +theorem UniformEmbedding.isDenseEmbedding {f : α → β} (h : UniformEmbedding f) (hd : DenseRange f) : + IsDenseEmbedding f := { h.embedding with dense := hd } +@[deprecated (since := "2024-09-30")] +alias UniformEmbedding.denseEmbedding := UniformEmbedding.isDenseEmbedding + theorem closedEmbedding_of_spaced_out {α} [TopologicalSpace α] [DiscreteTopology α] [T0Space β] {f : α → β} {s : Set (β × β)} (hs : s ∈ 𝓤 β) (hf : Pairwise fun x y => (f x, f y) ∉ s) : ClosedEmbedding f := by @@ -246,9 +249,9 @@ theorem closure_image_mem_nhds_of_uniformInducing {s : Set (α × α)} {e : α exact ⟨e x, hxV, mem_image_of_mem e hxU⟩ theorem uniformEmbedding_subtypeEmb (p : α → Prop) {e : α → β} (ue : UniformEmbedding e) - (de : DenseEmbedding e) : UniformEmbedding (DenseEmbedding.subtypeEmb p e) := + (de : IsDenseEmbedding e) : UniformEmbedding (IsDenseEmbedding.subtypeEmb p e) := { comap_uniformity := by - simp [comap_comap, Function.comp_def, DenseEmbedding.subtypeEmb, uniformity_subtype, + simp [comap_comap, Function.comp_def, IsDenseEmbedding.subtypeEmb, uniformity_subtype, ue.comap_uniformity.symm] inj := (de.subtype p).inj } @@ -434,14 +437,15 @@ theorem uniform_extend_subtype [CompleteSpace γ] {p : α → Prop} {e : α → {s : Set α} (hf : UniformContinuous fun x : Subtype p => f x.val) (he : UniformEmbedding e) (hd : ∀ x : β, x ∈ closure (range e)) (hb : closure (e '' s) ∈ 𝓝 b) (hs : IsClosed s) (hp : ∀ x ∈ s, p x) : ∃ c, Tendsto f (comap e (𝓝 b)) (𝓝 c) := by - have de : DenseEmbedding e := he.denseEmbedding hd - have de' : DenseEmbedding (DenseEmbedding.subtypeEmb p e) := de.subtype p - have ue' : UniformEmbedding (DenseEmbedding.subtypeEmb p e) := uniformEmbedding_subtypeEmb _ he de + have de : IsDenseEmbedding e := he.isDenseEmbedding hd + have de' : IsDenseEmbedding (IsDenseEmbedding.subtypeEmb p e) := de.subtype p + have ue' : UniformEmbedding (IsDenseEmbedding.subtypeEmb p e) := + uniformEmbedding_subtypeEmb _ he de have : b ∈ closure (e '' { x | p x }) := (closure_mono <| monotone_image <| hp) (mem_of_mem_nhds hb) let ⟨c, hc⟩ := uniformly_extend_exists ue'.toUniformInducing de'.dense hf ⟨b, this⟩ replace hc : Tendsto (f ∘ Subtype.val (p := p)) (((𝓝 b).comap e).comap Subtype.val) (𝓝 c) := by - simpa only [nhds_subtype_eq_comap, comap_comap, DenseEmbedding.subtypeEmb_coe] using hc + simpa only [nhds_subtype_eq_comap, comap_comap, IsDenseEmbedding.subtypeEmb_coe] using hc refine ⟨c, (tendsto_comap'_iff ?_).1 hc⟩ rw [Subtype.range_coe_subtype] exact ⟨_, hb, by rwa [← de.toInducing.closure_eq_preimage_closure_image, hs.closure_eq]⟩ diff --git a/scripts/no_lints_prime_decls.txt b/scripts/no_lints_prime_decls.txt index e8be7c1b7ded7..d66cd78fe7c09 100644 --- a/scripts/no_lints_prime_decls.txt +++ b/scripts/no_lints_prime_decls.txt @@ -998,7 +998,7 @@ decide_True' DedekindDomain.ProdAdicCompletions.algebra' DedekindDomain.ProdAdicCompletions.algebraMap_apply' DedekindDomain.ProdAdicCompletions.IsFiniteAdele.algebraMap' -DenseEmbedding.mk' +IsDenseEmbedding.mk' Dense.exists_ge' Dense.exists_le' IsDenseInducing.extend_eq_at'