diff --git a/Mathlib/LinearAlgebra/Finsupp.lean b/Mathlib/LinearAlgebra/Finsupp.lean index b925e5828c76f..ae862ded8054e 100644 --- a/Mathlib/LinearAlgebra/Finsupp.lean +++ b/Mathlib/LinearAlgebra/Finsupp.lean @@ -636,14 +636,14 @@ theorem linearCombination_zero : linearCombination R (0 : α → M) = 0 := variable {α M} -theorem linearCombination_comp_linear (f : M →ₗ[R] M') : +theorem linearCombination_linear_comp (f : M →ₗ[R] M') : linearCombination R (f ∘ v) = f ∘ₗ linearCombination R v := by ext simp [linearCombination_apply] theorem apply_linearCombination (f : M →ₗ[R] M') (v) (l : α →₀ R) : f (linearCombination R v l) = linearCombination R (f ∘ v) l := - congr($(linearCombination_comp_linear R f) l).symm + congr($(linearCombination_linear_comp R f) l).symm @[deprecated (since := "2024-08-29")] alias apply_total := apply_linearCombination diff --git a/Mathlib/LinearAlgebra/LinearIndependent.lean b/Mathlib/LinearAlgebra/LinearIndependent.lean index 325ee21927ba3..ceb48328ea4e6 100644 --- a/Mathlib/LinearAlgebra/LinearIndependent.lean +++ b/Mathlib/LinearAlgebra/LinearIndependent.lean @@ -282,14 +282,14 @@ theorem LinearIndependent.map (hv : LinearIndependent R v) {f : M →ₗ[R] M'} at hf_inj rw [linearIndependent_iff_ker] at hv ⊢ rw [hv, le_bot_iff] at hf_inj - rw [Finsupp.linearCombination_comp_linear, LinearMap.ker_comp, hf_inj] + rw [Finsupp.linearCombination_linear_comp, LinearMap.ker_comp, hf_inj] /-- If `v` is an injective family of vectors such that `f ∘ v` is linearly independent, then `v` spans a submodule disjoint from the kernel of `f` -/ theorem Submodule.range_ker_disjoint {f : M →ₗ[R] M'} (hv : LinearIndependent R (f ∘ v)) : Disjoint (span R (range v)) (LinearMap.ker f) := by - rw [linearIndependent_iff_ker, Finsupp.linearCombination_comp_linear, LinearMap.ker_comp] at hv + rw [linearIndependent_iff_ker, Finsupp.linearCombination_linear_comp, LinearMap.ker_comp] at hv rw [disjoint_iff_inf_le, ← Set.image_univ, Finsupp.span_image_eq_map_linearCombination, map_inf_eq_map_inf_comap, hv, inf_bot_eq, map_bot]