From 270043b5b75c5d667ebcf747e4ab3a108e453205 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?SnO=E2=82=82WMaN?= Date: Wed, 26 Jun 2024 23:14:03 +0000 Subject: [PATCH] feat(Set): Add `Set.Finite.powerset` (#14175) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit If set `s` is finite, then powerset of `s` (`𝒫 s`) is finite. Zulip: https://leanprover.zulipchat.com/#narrow/stream/217875-Is-there-code-for-X.3F/topic/Set.20is.20finite.2C.20then.20its.20powerset.20is.20finite/near/447338619 Recreate of #14173 --- Mathlib/Data/Set/Finite.lean | 3 +++ 1 file changed, 3 insertions(+) diff --git a/Mathlib/Data/Set/Finite.lean b/Mathlib/Data/Set/Finite.lean index a4ebbed313a99..f2f150c744389 100644 --- a/Mathlib/Data/Set/Finite.lean +++ b/Mathlib/Data/Set/Finite.lean @@ -1035,6 +1035,9 @@ theorem Finite.finite_subsets {α : Type u} {a : Set α} (h : a.Finite) : { b | ← and_assoc, Finset.coeEmb] using h.subset #align set.finite.finite_subsets Set.Finite.finite_subsets +protected theorem Finite.powerset {s : Set α} (h : s.Finite) : (𝒫 s).Finite := + h.finite_subsets + section Pi variable {ι : Type*} [Finite ι] {κ : ι → Type*} {t : ∀ i, Set (κ i)}