diff --git a/Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Instances.lean b/Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Instances.lean index 3fe0ee0628932..f4f6d464dee06 100644 --- a/Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Instances.lean +++ b/Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Instances.lean @@ -605,7 +605,7 @@ variable {A : Type*} [TopologicalSpace A] [Ring A] [StarRing A] [Algebra ℂ A] lemma cfcHom_real_eq_restrict {a : A} (ha : IsSelfAdjoint a) : cfcHom ha = ha.spectrumRestricts.starAlgHom (cfcHom ha.isStarNormal) (f := Complex.reCLM) := - ha.spectrumRestricts.cfcHom_eq_restrict _ Complex.isometry_ofReal.uniformEmbedding + ha.spectrumRestricts.cfcHom_eq_restrict _ Complex.isometry_ofReal.isUniformEmbedding ha ha.isStarNormal lemma cfc_real_eq_complex {a : A} (f : ℝ → ℝ) (ha : IsSelfAdjoint a := by cfc_tac) : @@ -626,7 +626,7 @@ variable {A : Type*} [TopologicalSpace A] [NonUnitalRing A] [StarRing A] [Module lemma cfcₙHom_real_eq_restrict {a : A} (ha : IsSelfAdjoint a) : cfcₙHom ha = (ha.quasispectrumRestricts.2).nonUnitalStarAlgHom (cfcₙHom ha.isStarNormal) (f := Complex.reCLM) := - ha.quasispectrumRestricts.2.cfcₙHom_eq_restrict _ Complex.isometry_ofReal.uniformEmbedding + ha.quasispectrumRestricts.2.cfcₙHom_eq_restrict _ Complex.isometry_ofReal.isUniformEmbedding ha ha.isStarNormal lemma cfcₙ_real_eq_complex {a : A} (f : ℝ → ℝ) (ha : IsSelfAdjoint a := by cfc_tac) : @@ -650,13 +650,13 @@ variable {A : Type*} [TopologicalSpace A] [Ring A] [PartialOrder A] [StarRing A] lemma cfcHom_nnreal_eq_restrict {a : A} (ha : 0 ≤ a) : cfcHom ha = (SpectrumRestricts.nnreal_of_nonneg ha).starAlgHom (cfcHom (IsSelfAdjoint.of_nonneg ha)) := - (SpectrumRestricts.nnreal_of_nonneg ha).cfcHom_eq_restrict _ uniformEmbedding_subtype_val _ _ + (SpectrumRestricts.nnreal_of_nonneg ha).cfcHom_eq_restrict _ isUniformEmbedding_subtype_val _ _ lemma cfc_nnreal_eq_real {a : A} (f : ℝ≥0 → ℝ≥0) (ha : 0 ≤ a := by cfc_tac) : cfc f a = cfc (fun x ↦ f x.toNNReal : ℝ → ℝ) a := by replace ha : 0 ≤ a := ha -- hack to avoid issues caused by autoParam exact (SpectrumRestricts.nnreal_of_nonneg ha).cfc_eq_restrict _ - uniformEmbedding_subtype_val ha (.of_nonneg ha) _ + isUniformEmbedding_subtype_val ha (.of_nonneg ha) _ end NNRealEqReal @@ -675,13 +675,13 @@ lemma cfcₙHom_nnreal_eq_restrict {a : A} (ha : 0 ≤ a) : cfcₙHom ha = (QuasispectrumRestricts.nnreal_of_nonneg ha).nonUnitalStarAlgHom (cfcₙHom (IsSelfAdjoint.of_nonneg ha)) := (QuasispectrumRestricts.nnreal_of_nonneg ha).cfcₙHom_eq_restrict _ - uniformEmbedding_subtype_val _ _ + isUniformEmbedding_subtype_val _ _ lemma cfcₙ_nnreal_eq_real {a : A} (f : ℝ≥0 → ℝ≥0) (ha : 0 ≤ a := by cfc_tac) : cfcₙ f a = cfcₙ (fun x ↦ f x.toNNReal : ℝ → ℝ) a := by replace ha : 0 ≤ a := ha -- hack to avoid issues caused by autoParam exact (QuasispectrumRestricts.nnreal_of_nonneg ha).cfcₙ_eq_restrict _ - uniformEmbedding_subtype_val ha (.of_nonneg ha) _ + isUniformEmbedding_subtype_val ha (.of_nonneg ha) _ end NNRealEqRealNonUnital