diff --git a/Mathlib/MeasureTheory/Function/L1Space.lean b/Mathlib/MeasureTheory/Function/L1Space.lean index e520fdcb9d5c5..327d15fadb8b8 100644 --- a/Mathlib/MeasureTheory/Function/L1Space.lean +++ b/Mathlib/MeasureTheory/Function/L1Space.lean @@ -1146,7 +1146,7 @@ theorem Integrable.im (hf : Integrable f μ) : Integrable (fun x => RCLike.im (f exact hf.im lemma Integrable.iff_ofReal {f : α → ℝ} : Integrable f μ ↔ Integrable (fun x ↦ (f x : ℂ)) μ := - ⟨fun hf ↦ hf.ofReal, fun hf ↦ hf.re⟩ + ⟨fun hf ↦ hf.ofReal, fun hf ↦ hf.re⟩ end RCLike diff --git a/Mathlib/MeasureTheory/Integral/IntegrableOn.lean b/Mathlib/MeasureTheory/Integral/IntegrableOn.lean index ecb0326e6ca68..d48186e7ac4e6 100644 --- a/Mathlib/MeasureTheory/Integral/IntegrableOn.lean +++ b/Mathlib/MeasureTheory/Integral/IntegrableOn.lean @@ -700,7 +700,7 @@ namespace MeasureTheory variable {X : Type*} [MeasurableSpace X] {𝕜 : Type*} [RCLike 𝕜] {μ : Measure X} {s : Set X} theorem IntegrableOn.iff_ofReal {f : X → ℝ} : IntegrableOn f s μ ↔ IntegrableOn (fun x ↦ (f x : ℂ)) s μ := - MeasureTheory.Integrable.iff_ofReal + MeasureTheory.Integrable.iff_ofReal theorem IntegrableOn.ofReal {f : X → ℝ} (hf : IntegrableOn f s μ) : IntegrableOn (fun x => (f x : 𝕜)) s μ := by @@ -712,7 +712,7 @@ theorem IntegrableOn.re_im_iff {f : X → 𝕜} : IntegrableOn f s μ := Integrable.re_im_iff (f := f) theorem IntegrableOn.re {f : X → 𝕜} (hf : IntegrableOn f s μ) : - IntegrableOn (fun x => RCLike.re (f x)) s μ := (IntegrableOn.re_im_iff.2 hf).left + IntegrableOn (fun x => RCLike.re (f x)) s μ := (IntegrableOn.re_im_iff.2 hf).left theorem IntegrableOn.im {f : X → 𝕜} (hf : IntegrableOn f s μ) : IntegrableOn (fun x => RCLike.im (f x)) s μ := (IntegrableOn.re_im_iff.2 hf).right diff --git a/Mathlib/MeasureTheory/Integral/IntervalIntegral.lean b/Mathlib/MeasureTheory/Integral/IntervalIntegral.lean index 84aa7b3475922..2c5d624555a55 100644 --- a/Mathlib/MeasureTheory/Integral/IntervalIntegral.lean +++ b/Mathlib/MeasureTheory/Integral/IntervalIntegral.lean @@ -602,10 +602,10 @@ nonrec theorem integral_ofReal {a b : ℝ} {μ : Measure ℝ} {f : ℝ → ℝ} theorem intervalIntegral_re {μ : Measure ℝ} {a b : ℝ} {f : ℝ → ℂ} (hab: a ≤ b) (hf: IntervalIntegrable f μ a b) : (∫ x in (a)..b, (f x).re ∂μ) = (∫ x in (a)..b, f x ∂μ).re := by - repeat rw [intervalIntegral.integral_of_le hab] - apply setIntegral_re - rw [← intervalIntegrable_iff_integrableOn_Ioc_of_le hab] - exact hf + repeat rw [intervalIntegral.integral_of_le hab] + apply setIntegral_re + rw [← intervalIntegrable_iff_integrableOn_Ioc_of_le hab] + exact hf section ContinuousLinearMap