diff --git a/Mathlib/CategoryTheory/Category/RelCat.lean b/Mathlib/CategoryTheory/Category/RelCat.lean index b505cec20e646..48f8c610da96b 100644 --- a/Mathlib/CategoryTheory/Category/RelCat.lean +++ b/Mathlib/CategoryTheory/Category/RelCat.lean @@ -27,7 +27,7 @@ universe u -- This file is about Lean 3 declaration "Rel". -/-- A type synonym for `Type`, which carries the category instance for which +/-- A type synonym for `Type u`, which carries the category instance for which morphisms are binary relations. -/ def RelCat := Type u @@ -83,9 +83,9 @@ instance graphFunctor_essSurj : graphFunctor.EssSurj := graphFunctor.essSurj_of_surj Function.surjective_id /-- A relation is an isomorphism in `RelCat` iff it is the image of an isomorphism in -`Type`. -/ +`Type u`. -/ theorem rel_iso_iff {X Y : RelCat} (r : X ⟶ Y) : - IsIso (C := RelCat) r ↔ ∃ f : (Iso (C := Type) X Y), graphFunctor.map f.hom = r := by + IsIso (C := RelCat) r ↔ ∃ f : (Iso (C := Type u) X Y), graphFunctor.map f.hom = r := by constructor · intro h have h1 := congr_fun₂ h.hom_inv_id @@ -93,7 +93,7 @@ theorem rel_iso_iff {X Y : RelCat} (r : X ⟶ Y) : simp only [RelCat.Hom.rel_comp_apply₂, RelCat.Hom.rel_id_apply₂, eq_iff_iff] at h1 h2 obtain ⟨f, hf⟩ := Classical.axiomOfChoice (fun a => (h1 a a).mpr rfl) obtain ⟨g, hg⟩ := Classical.axiomOfChoice (fun a => (h2 a a).mpr rfl) - suffices hif : IsIso (C := Type) f by + suffices hif : IsIso (C := Type u) f by use asIso f ext x y simp only [asIso_hom, graphFunctor_map]