diff --git a/Mathlib/Data/Set/Prod.lean b/Mathlib/Data/Set/Prod.lean index acc80442bafa7..b1c42bc17e180 100644 --- a/Mathlib/Data/Set/Prod.lean +++ b/Mathlib/Data/Set/Prod.lean @@ -9,13 +9,15 @@ import Mathlib.Data.SProd /-! # Sets in product and pi types -This file defines the product of sets in `α × β` and in `Π i, α i` along with the diagonal of a -type. +This file proves basic properties of product of sets in `α × β` and in `Π i, α i`, and of the +diagonal of a type. ## Main declarations +This file contains basic results on the following notions, which are defined in `Set.Operations`. + * `Set.prod`: Binary product of sets. For `s : Set α`, `t : Set β`, we have - `s.prod t : Set (α × β)`. + `s.prod t : Set (α × β)`. Denoted by `s ×ˢ t`. * `Set.diagonal`: Diagonal of a type. `Set.diagonal α = {(x, x) | x : α}`. * `Set.offDiag`: Off-diagonal. `s ×ˢ s` without the diagonal. * `Set.pi`: Arbitrary product of sets. @@ -299,6 +301,9 @@ theorem fst_image_prod (s : Set β) {t : Set α} (ht : t.Nonempty) : Prod.fst '' let ⟨x, hx⟩ := ht ⟨(y, x), ⟨hy, hx⟩, rfl⟩ +lemma mapsTo_fst_prod {s : Set α} {t : Set β} : MapsTo Prod.fst (s ×ˢ t) s := + fun _ hx ↦ (mem_prod.1 hx).1 + theorem prod_subset_preimage_snd (s : Set α) (t : Set β) : s ×ˢ t ⊆ Prod.snd ⁻¹' t := inter_subset_right @@ -310,6 +315,9 @@ theorem snd_image_prod {s : Set α} (hs : s.Nonempty) (t : Set β) : Prod.snd '' let ⟨x, x_in⟩ := hs ⟨(x, y), ⟨x_in, y_in⟩, rfl⟩ +lemma mapsTo_snd_prod {s : Set α} {t : Set β} : MapsTo Prod.snd (s ×ˢ t) t := + fun _ hx ↦ (mem_prod.1 hx).2 + theorem prod_diff_prod : s ×ˢ t \ s₁ ×ˢ t₁ = s ×ˢ (t \ t₁) ∪ (s \ s₁) ×ˢ t := by ext x by_cases h₁ : x.1 ∈ s₁ <;> by_cases h₂ : x.2 ∈ t₁ <;> simp [*]