-
Notifications
You must be signed in to change notification settings - Fork 28
/
clamr.cpp
640 lines (518 loc) · 24.8 KB
/
clamr.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
/*
* Copyright (c) 2011-2019, Triad National Security, LLC.
* All rights Reserved.
*
* CLAMR -- LA-CC-11-094
*
* Copyright 2011-2019. Triad National Security, LLC. This software was produced
* under U.S. Government contract 89233218CNA000001 for Los Alamos National
* Laboratory (LANL), which is operated by Triad National Security, LLC
* for the U.S. Department of Energy. The U.S. Government has rights to use,
* reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR
* TRIAD NATIONAL SECURITY, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
* ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is modified
* to produce derivative works, such modified software should be clearly marked,
* so as not to confuse it with the version available from LANL.
*
* Additionally, redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Triad National Security, LLC, Los Alamos
* National Laboratory, LANL, the U.S. Government, nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE TRIAD NATIONAL SECURITY, LLC AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
* NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL TRIAD NATIONAL
* SECURITY, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* CLAMR -- LA-CC-11-094
* This research code is being developed as part of the
* 2011 X Division Summer Workshop for the express purpose
* of a collaborative code for development of ideas in
* the implementation of AMR codes for Exascale platforms
*
* AMR implementation of the Wave code previously developed
* as a demonstration code for regular grids on Exascale platforms
* as part of the Supercomputing Challenge and Los Alamos
* National Laboratory
*
* Authors: Bob Robey XCP-2 [email protected]
* Neal Davis [email protected], [email protected]
* David Nicholaeff [email protected], [email protected]
* Dennis Trujillo [email protected], [email protected]
*
*/
#include "ezcl/ezcl.h"
#include "input.h"
#include "mesh/mesh.h"
#include "mesh/partition.h"
#include "state.h"
#include "l7/l7.h"
#include "timer/timer.h"
#include "memstats/memstats.h"
#ifdef HAVE_MPI
#include <mpi.h>
#endif
#include <algorithm>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <unistd.h>
#include <vector>
#include "graphics/display.h"
#ifndef DEBUG
#define DEBUG 0
#endif
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
static int do_cpu_calc = 0;
static int do_gpu_calc = 1;
typedef unsigned int uint;
#ifdef HAVE_GRAPHICS
static double circle_radius=-1.0;
static int view_mode = 0;
#ifdef FULL_PRECISION
void (*set_display_cell_coordinates)(double *, double *, double *, double *) = &set_display_cell_coordinates_double;
void (*set_display_cell_data)(double *) = &set_display_cell_data_double;
#else
void (*set_display_cell_coordinates)(float *, float *, float *, float *) = &set_display_cell_coordinates_float;
void (*set_display_cell_data)(float *) = &set_display_cell_data_float;
#endif
#endif
bool restart, // Flag to start from a back up file; init in input.cpp::parseInput().
verbose, // Flag for verbose command-line output; init in input.cpp::parseInput().
localStencil, // Flag for use of local stencil; init in input.cpp::parseInput().
face_based, // Flag for face-based finite difference;
outline; // Flag for drawing outlines of cells; init in input.cpp::parseInput().
int outputInterval, // Periodicity of output; init in input.cpp::parseInput().
crux_type, // Type of checkpoint/restart -- CRUX_NONE, CRUX_IN_MEMORY, CRUX_DISK;
// init in input.cpp::parseInput().
enhanced_precision_sum,// Flag for enhanced precision sum (default true); init in input.cpp::parseInput().
lttrace_on, // Flag to turn on logical time trace package;
do_quo_setup, // Flag to turn on quo dynamic scheduling policies package;
levmx, // Maximum number of refinement levels; init in input.cpp::parseInput().
nx, // x-resolution of coarse grid; init in input.cpp::parseInput().
ny, // y-resolution of coarse grid; init in input.cpp::parseInput().
niter, // Maximum time step; init in input.cpp::parseInput().
graphic_outputInterval, // Periocity of graphic output that is saved; init in input.cpp::parseInput()
checkpoint_outputInterval, // Periodicity of checkpoint output that is saved; init in input.cpp::parseInput()
num_of_rollback_states,// Maximum number of rollback states to maintain; init in input.cpp::parseInput()
output_cuts, // Flag for outputting file of slice along y-axis; init in input.cpp::parseInput().
backup_file_num,// Backup file number to restart simulation from; init in input.cpp::parseInput()
numpe, //
ndim = 2, // Dimensionality of problem (2 or 3).
ndigits,
nbits;
double upper_mass_diff_percentage; // Flag for the allowed pecentage difference to the total
// mass per output intervals; init in input.cpp::parseInput().
char *restart_file;
enum partition_method initial_order, // Initial order of mesh.
cycle_reorder; // Order of mesh every cycle.
static Mesh *mesh; // Object containing mesh information; init in grid.cpp::main().
static State *state; // Object containing state information corresponding to mesh; init in grid.cpp::main().
// Set up timing information.
static struct timespec tstart;
static cl_event start_write_event, end_write_event;
static double H_sum_initial = 0.0;
static long gpu_time_graphics = 0;
double cpu_time_main_setup = 0.0;
int main(int argc, char **argv) {
int ierr;
// Process command-line arguments, if any.
int mype=0;
int numpe=0;
parseInput(argc, argv);
L7_Init(&mype, &numpe, &argc, argv, do_quo_setup, lttrace_on);
ierr = ezcl_devtype_init(CL_DEVICE_TYPE_GPU);
if (ierr == EZCL_NODEVICE) {
ierr = ezcl_devtype_init(CL_DEVICE_TYPE_CPU);
}
if (ierr != EZCL_SUCCESS) {
printf("No opencl device available -- aborting\n");
L7_Terminate();
exit(-1);
}
L7_Dev_Init();
struct timespec tstart_setup;
cpu_timer_start(&tstart_setup);
real_t circ_radius = 6.0;
// Scale the circle appropriately for the mesh size.
circ_radius = circ_radius * (real_t) nx / 128.0;
int boundary = 1;
int parallel_in = 1;
double deltax_in = 1.0;
double deltay_in = 1.0;
mesh = new Mesh(nx, ny, levmx, ndim, deltax_in, deltay_in, boundary, parallel_in, do_gpu_calc);
if (DEBUG) {
//if (mype == 0) mesh->print();
char filename[10];
sprintf(filename,"out%1d",mype);
mesh->fp=fopen(filename,"w");
//mesh->print_local();
}
mesh->init(nx, ny, circ_radius, initial_order, do_gpu_calc);
size_t &ncells = mesh->ncells;
size_t &ncells_global = mesh->ncells_global;
int &noffset = mesh->noffset;
state = new State(mesh);
state->init(do_gpu_calc);
cl_mem &dev_corners_i_local = mesh->dev_corners_i;
cl_mem &dev_corners_j_local = mesh->dev_corners_j;
vector<int> &corners_i_local = mesh->corners_i;
vector<int> &corners_j_local = mesh->corners_j;
vector<int> &nsizes = mesh->nsizes;
vector<int> &ndispl = mesh->ndispl;
cl_mem &dev_H = state->dev_H;
cl_mem &dev_U = state->dev_U;
cl_mem &dev_V = state->dev_V;
cl_mem &dev_celltype = mesh->dev_celltype;
cl_mem &dev_i = mesh->dev_i;
cl_mem &dev_j = mesh->dev_j;
cl_mem &dev_level = mesh->dev_level;
vector<spatial_t> &x = mesh->x;
vector<spatial_t> &dx = mesh->dx;
vector<spatial_t> &y = mesh->y;
vector<spatial_t> &dy = mesh->dy;
nsizes.resize(numpe);
ndispl.resize(numpe);
int ncells_int = ncells;
MPI_Allgather(&ncells_int, 1, MPI_INT, &nsizes[0], 1, MPI_INT, MPI_COMM_WORLD);
ndispl[0]=0;
for (int ip=1; ip<numpe; ip++){
ndispl[ip] = ndispl[ip-1] + nsizes[ip-1];
}
noffset = ndispl[mype];
size_t corners_size = corners_i_local.size();
dev_corners_i_local = ezcl_malloc(&corners_i_local[0], const_cast<char *>("dev_corners_i_local"), &corners_size, sizeof(cl_int), CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, 0);
dev_corners_j_local = ezcl_malloc(&corners_j_local[0], const_cast<char *>("dev_corners_j_local"), &corners_size, sizeof(cl_int), CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, 0);
size_t mem_request = (int)((float)ncells*mesh->mem_factor);
dev_celltype = ezcl_malloc(NULL, const_cast<char *>("dev_celltype"), &mem_request, sizeof(cl_char_t), CL_MEM_READ_WRITE, 0);
dev_i = ezcl_malloc(NULL, const_cast<char *>("dev_i"), &mem_request, sizeof(cl_int), CL_MEM_READ_ONLY, 0);
dev_j = ezcl_malloc(NULL, const_cast<char *>("dev_j"), &mem_request, sizeof(cl_int), CL_MEM_READ_ONLY, 0);
dev_level = ezcl_malloc(NULL, const_cast<char *>("dev_level"), &mem_request, sizeof(cl_uchar_t), CL_MEM_READ_WRITE, 0);
state->resize(ncells);
x.resize(ncells);
dx.resize(ncells);
y.resize(ncells);
dy.resize(ncells);
mesh->calc_spatial_coordinates(0);
state->fill_circle(circ_radius, 80.0, 10.0);
state->allocate_device_memory(ncells);
size_t one = 1;
state->dev_deltaT = ezcl_malloc(NULL, const_cast<char *>("dev_deltaT"), &one, sizeof(cl_real_t), CL_MEM_READ_WRITE, 0);
// Set write buffers for data.
cl_command_queue command_queue = ezcl_get_command_queue();
ezcl_enqueue_write_buffer(command_queue, dev_H, CL_FALSE, 0, ncells*sizeof(cl_state_t), (void *)&state->H[0], &start_write_event);
ezcl_enqueue_write_buffer(command_queue, dev_U, CL_FALSE, 0, ncells*sizeof(cl_state_t), (void *)&state->U[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_V, CL_FALSE, 0, ncells*sizeof(cl_state_t), (void *)&state->V[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_celltype, CL_FALSE, 0, ncells*sizeof(cl_char_t), (void *)&mesh->celltype[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_i, CL_FALSE, 0, ncells*sizeof(cl_int), (void *)&mesh->i[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_j, CL_FALSE, 0, ncells*sizeof(cl_int), (void *)&mesh->j[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_level, CL_TRUE, 0, ncells*sizeof(cl_uchar_t), (void *)&mesh->level[0], &end_write_event);
state->gpu_timers[STATE_TIMER_WRITE] += ezcl_timer_calc(&start_write_event, &end_write_event);
mesh->dev_nlft = NULL;
mesh->dev_nrht = NULL;
mesh->dev_nbot = NULL;
mesh->dev_ntop = NULL;
state->dev_mpot = NULL;
// Kahan-type enhanced precision sum implementation.
double H_sum = state->mass_sum(enhanced_precision_sum);
if (mype == 0) printf ("Mass of initialized cells equal to %14.12lg\n", H_sum);
H_sum_initial = H_sum;
double cpu_time_main_setup = cpu_timer_stop(tstart_setup);
mesh->parallel_output("CPU: setup time time was",cpu_time_main_setup, 0, "s");
long long mem_used = memstats_memused();
if (mem_used > 0) {
mesh->parallel_output("Memory used in startup ",mem_used, 0, "kB");
mesh->parallel_output("Memory peak in startup ",memstats_mempeak(), 0, "kB");
mesh->parallel_output("Memory free at startup ",memstats_memfree(), 0, "kB");
mesh->parallel_output("Memory available at startup ",memstats_memtotal(), 0, "kB");
}
if (mype == 0) {
printf("Iteration 0 timestep n/a Sim Time 0.0 cells %ld Mass Sum %14.12lg\n", ncells_global, H_sum);
}
for (int i = 0; i < MESH_COUNTER_SIZE; i++){
mesh->cpu_counters[i]=0;
}
for (int i = 0; i < MESH_TIMER_SIZE; i++){
mesh->cpu_timers[i]=0.0;
}
#ifdef HAVE_GRAPHICS
#ifdef HAVE_OPENGL
set_display_mysize(ncells_global);
vector<state_t> H_global;
vector<spatial_t> x_global;
vector<spatial_t> dx_global;
vector<spatial_t> y_global;
vector<spatial_t> dy_global;
vector<int> proc_global;
if (mype == 0){
H_global.resize(ncells_global);
x_global.resize(ncells_global);
dx_global.resize(ncells_global);
y_global.resize(ncells_global);
dy_global.resize(ncells_global);
proc_global.resize(ncells_global);
}
MPI_Gatherv(&x[0], nsizes[mype], MPI_SPATIAL_T, &x_global[0], &nsizes[0], &ndispl[0], MPI_SPATIAL_T, 0, MPI_COMM_WORLD);
MPI_Gatherv(&dx[0], nsizes[mype], MPI_SPATIAL_T, &dx_global[0], &nsizes[0], &ndispl[0], MPI_SPATIAL_T, 0, MPI_COMM_WORLD);
MPI_Gatherv(&y[0], nsizes[mype], MPI_SPATIAL_T, &y_global[0], &nsizes[0], &ndispl[0], MPI_SPATIAL_T, 0, MPI_COMM_WORLD);
MPI_Gatherv(&dy[0], nsizes[mype], MPI_SPATIAL_T, &dy_global[0], &nsizes[0], &ndispl[0], MPI_SPATIAL_T, 0, MPI_COMM_WORLD);
MPI_Gatherv(&state->H[0], nsizes[mype], MPI_STATE_T, &H_global[0], &nsizes[0], &ndispl[0], MPI_STATE_T, 0, MPI_COMM_WORLD);
set_display_cell_data(&H_global[0]);
set_display_cell_coordinates(&x_global[0], &dx_global[0], &y_global[0], &dy_global[0]);
if (view_mode == 0) {
mesh->proc.resize(ncells);
for (size_t ii = 0; ii<ncells; ii++){
mesh->proc[ii] = mesh->mype;
}
MPI_Gatherv(&mesh->proc[0], nsizes[mype], MPI_INT, &proc_global[0], &nsizes[0], &ndispl[0], MPI_INT, 0, MPI_COMM_WORLD);
}
set_display_cell_proc(&proc_global[0]);
#endif
#ifdef HAVE_MPE
set_display_mysize(ncells);
set_display_cell_data(&state->H[0]);
set_display_cell_coordinates(&mesh->x[0], &mesh->dx[0], &mesh->y[0], &mesh->dy[0]);
set_display_cell_proc(&mesh->proc[0]);
#endif
set_display_window((float)mesh->xmin, (float)mesh->xmax, (float)mesh->ymin, (float)mesh->ymax);
set_display_viewmode(view_mode);
set_display_outline((int)outline);
init_display(&argc, argv, "Shallow Water");
set_display_circle_radius(circle_radius);
draw_scene();
if (verbose) sleep(5);
sleep(2);
// Set flag to show mesh results rather than domain decomposition.
view_mode = 1;
// Clear superposition of circle on grid output.
circle_radius = -1.0;
MPI_Barrier(MPI_COMM_WORLD);
cpu_timer_start(&tstart);
set_idle_function(&do_calc);
start_main_loop();
#else
MPI_Barrier(MPI_COMM_WORLD);
cpu_timer_start(&tstart);
for (int it = 0; it < 10000000; it++) {
do_calc();
}
#endif
return 0;
}
static int ncycle = 0;
static double simTime = 0.0;
extern "C" void do_calc(void)
{
double sigma = 0.95;
//int icount=0;
if (cycle_reorder == ZORDER || cycle_reorder == HILBERT_SORT) {
printf("Can't do this problem with GPU\n");
exit(0);
}
// Initialize state variables for GPU calculation.
int &mype = mesh->mype;
int &numpe = mesh->numpe;
#ifdef HAVE_GRAPHICS
struct timespec tstart_cpu;
#ifdef HAVE_OPENGL
vector<int> &nsizes = mesh->nsizes;
vector<int> &ndispl = mesh->ndispl;
#endif
vector<spatial_t> &x = mesh->x;
vector<spatial_t> &dx = mesh->dx;
vector<spatial_t> &y = mesh->y;
vector<spatial_t> &dy = mesh->dy;
cl_mem &dev_H = state->dev_H;
#endif
//int levmx = mesh->levmx;
size_t &ncells_global = mesh->ncells_global;
size_t &ncells = mesh->ncells;
vector<char_t> mpot;
vector<char_t> mpot_global;
size_t new_ncells = 0;
double H_sum = -1.0;
double deltaT = 0.0;
// Main loop.
for (int nburst = 0; nburst < outputInterval && ncycle < niter; nburst++, ncycle++) {
size_t local_work_size = MIN(ncells, TILE_SIZE);
size_t global_work_size = ((ncells+local_work_size - 1) /local_work_size) * local_work_size;
size_t block_size = global_work_size/local_work_size;
// Calculate the real time step for the current discrete time step.
deltaT = state->gpu_set_timestep(sigma);
simTime += deltaT;
mesh->gpu_calc_neighbors_local();
// Apply BCs is currently done as first part of gpu_finite_difference and so comparison won't work here
// Execute main kernel
state->gpu_calc_finite_difference(deltaT);
vector<int> ioffset(block_size);
int icount = 0;
int jcount = 0;
new_ncells = state->gpu_calc_refine_potential(icount, jcount);
//int ncells_global_old = ncells_global;
MPI_Allreduce(&new_ncells, &ncells_global, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
// Resize the mesh, inserting cells where refinement is necessary.
if (state->dev_mpot) state->gpu_rezone_all(icount, jcount, localStencil);
ncells = new_ncells;
state->gpu_do_load_balance_local(new_ncells);
ioffset.clear();
H_sum = -1.0;
// mesh->proc.resize(ncells);
// if (icount) {
// vector<int> index(ncells);
// vector<int> index_global(ncells_global);
// mesh->partition_cells(numpe, index, cycle_reorder);
// //state->state_reorder(index);
// }
} // End burst loop
if (H_sum < 0) {
H_sum = state->gpu_mass_sum(enhanced_precision_sum);
}
#ifdef __APPLE__
if (isnan(H_sum)) {
#else
if (std::isnan(H_sum)) {
#endif
printf("Got a NAN on cycle %d\n",ncycle);
exit(-1);
}
if (mype == 0){
printf("Iteration %3d timestep %lf Sim Time %lf cells %ld Mass Sum %14.12lg Mass Change %12.6lg\n",
ncycle, deltaT, simTime, ncells_global, H_sum, H_sum - H_sum_initial);
}
#ifdef HAVE_GRAPHICS
static cl_event start_read_event, end_read_event;
cl_mem dev_x = ezcl_malloc(NULL, const_cast<char *>("dev_x"), &ncells, sizeof(cl_spatial_t), CL_MEM_READ_WRITE, 0);
cl_mem dev_dx = ezcl_malloc(NULL, const_cast<char *>("dev_dx"), &ncells, sizeof(cl_spatial_t), CL_MEM_READ_WRITE, 0);
cl_mem dev_y = ezcl_malloc(NULL, const_cast<char *>("dev_y"), &ncells, sizeof(cl_spatial_t), CL_MEM_READ_WRITE, 0);
cl_mem dev_dy = ezcl_malloc(NULL, const_cast<char *>("dev_dy"), &ncells, sizeof(cl_spatial_t), CL_MEM_READ_WRITE, 0);
mesh->gpu_calc_spatial_coordinates(dev_x, dev_dx, dev_y, dev_dy);
x.resize(ncells);
dx.resize(ncells);
y.resize(ncells);
dy.resize(ncells);
//H.resize(max(ncells,ncells_ghost));
vector<state_t>H_graphics(ncells);
cl_command_queue command_queue = ezcl_get_command_queue();
ezcl_enqueue_read_buffer(command_queue, dev_x, CL_FALSE, 0, ncells*sizeof(cl_spatial_t), (void *)&x[0], &start_read_event);
ezcl_enqueue_read_buffer(command_queue, dev_dx, CL_FALSE, 0, ncells*sizeof(cl_spatial_t), (void *)&dx[0], NULL);
ezcl_enqueue_read_buffer(command_queue, dev_y, CL_FALSE, 0, ncells*sizeof(cl_spatial_t), (void *)&y[0], NULL);
ezcl_enqueue_read_buffer(command_queue, dev_dy, CL_FALSE, 0, ncells*sizeof(cl_spatial_t), (void *)&dy[0], NULL);
ezcl_enqueue_read_buffer(command_queue, dev_H, CL_TRUE, 0, ncells*sizeof(cl_state_t), (void *)&H_graphics[0], &end_read_event);
gpu_time_graphics += ezcl_timer_calc(&start_read_event, &end_read_event);
cpu_timer_start(&tstart_cpu);
ezcl_device_memory_remove(dev_x);
ezcl_device_memory_remove(dev_dx);
ezcl_device_memory_remove(dev_y);
ezcl_device_memory_remove(dev_dy);
#ifdef HAVE_OPENGL
set_display_mysize(ncells_global);
vector<spatial_t> x_global;
vector<spatial_t> dx_global;
vector<spatial_t> y_global;
vector<spatial_t> dy_global;
vector<state_t> H_graphics_global;
vector<int> proc_global;
if (mype == 0) {
x_global.resize(ncells_global);
dx_global.resize(ncells_global);
y_global.resize(ncells_global);
dy_global.resize(ncells_global);
H_graphics_global.resize(ncells_global);
proc_global.resize(ncells_global);
}
MPI_Gatherv(&x[0], ncells, MPI_SPATIAL_T, &x_global[0], &nsizes[0], &ndispl[0], MPI_SPATIAL_T, 0, MPI_COMM_WORLD);
MPI_Gatherv(&dx[0], ncells, MPI_SPATIAL_T, &dx_global[0], &nsizes[0], &ndispl[0], MPI_SPATIAL_T, 0, MPI_COMM_WORLD);
MPI_Gatherv(&y[0], ncells, MPI_SPATIAL_T, &y_global[0], &nsizes[0], &ndispl[0], MPI_SPATIAL_T, 0, MPI_COMM_WORLD);
MPI_Gatherv(&dy[0], ncells, MPI_SPATIAL_T, &dy_global[0], &nsizes[0], &ndispl[0], MPI_SPATIAL_T, 0, MPI_COMM_WORLD);
MPI_Gatherv(&H_graphics[0], ncells, MPI_STATE_T, &H_graphics_global[0], &nsizes[0], &ndispl[0], MPI_STATE_T, 0, MPI_COMM_WORLD);
if (view_mode == 0) {
mesh->proc.resize(ncells);
for (size_t ii = 0; ii<ncells; ii++){
mesh->proc[ii] = mesh->mype;
}
MPI_Gatherv(&mesh->proc[0], nsizes[mype], MPI_INT, &proc_global[0], &nsizes[0], &ndispl[0], MPI_INT, 0, MPI_COMM_WORLD);
}
set_display_viewmode(view_mode);
set_display_cell_coordinates(&x_global[0], &dx_global[0], &y_global[0], &dy_global[0]);
set_display_cell_data(&H_graphics_global[0]);
set_display_cell_proc(&proc_global[0]);
set_display_circle_radius(circle_radius);
draw_scene();
MPI_Barrier(MPI_COMM_WORLD);
#endif
#ifdef HAVE_MPE
set_display_mysize(ncells);
set_display_viewmode(view_mode);
set_display_cell_coordinates(&x[0], &dx[0], &y[0], &dy[0]);
set_display_cell_data(&H_graphics[0]);
set_display_cell_proc(&mesh->proc[0]);
set_display_circle_radius(circle_radius);
draw_scene();
MPI_Barrier(MPI_COMM_WORLD);
if (ncycle == 6) sleep(300);
#endif
gpu_time_graphics += (long)(cpu_timer_stop(tstart_cpu)*1.0e9);
#endif
// Output final results and timing information.
if (ncycle >= niter) {
//free_display();
// Get overall program timing.
double elapsed_time = cpu_timer_stop(tstart);
long long mem_used = memstats_memused();
if (mem_used > 0) {
mesh->parallel_output("Memory used ",mem_used, 0, "kB");
mesh->parallel_output("Memory peak ",memstats_mempeak(), 0, "kB");
mesh->parallel_output("Memory free ",memstats_memfree(), 0, "kB");
mesh->parallel_output("Memory available ",memstats_memtotal(), 0, "kB");
}
state->output_timing_info(do_cpu_calc, do_gpu_calc, elapsed_time);
mesh->parallel_output("CPU: setup time time was",cpu_time_main_setup, 0, "s");
mesh->parallel_output("GPU: graphics time was",(double) gpu_time_graphics * 1.0e-9, 0, "s");
mesh->print_partition_measure();
mesh->print_calc_neighbor_type();
mesh->print_partition_type();
if (mype ==0) {
printf("GPU: rezone frequency \t %8.4f\tpercent\n", (double)mesh->get_gpu_counter(MESH_COUNTER_REZONE)/(double)ncycle*100.0 );
printf("GPU: calc neigh frequency \t %8.4f\tpercent\n", (double)mesh->get_gpu_counter(MESH_COUNTER_CALC_NEIGH)/(double)ncycle*100.0 );
printf("GPU: load balance frequency \t %8.4f\tpercent\n", (double)mesh->get_gpu_counter(MESH_COUNTER_LOAD_BALANCE)/(double)ncycle*100.0 );
printf("GPU: refine_smooth_iter per rezone \t %8.4f\t\n", (double)mesh->get_gpu_counter(MESH_COUNTER_REFINE_SMOOTH)/(double)mesh->get_gpu_counter(MESH_COUNTER_REZONE) );
}
ezcl_device_memory_remove(mesh->dev_corners_i);
ezcl_device_memory_remove(mesh->dev_corners_j);
if (mesh->dev_nlft != NULL){
ezcl_device_memory_remove(mesh->dev_nlft);
ezcl_device_memory_remove(mesh->dev_nrht);
ezcl_device_memory_remove(mesh->dev_nbot);
ezcl_device_memory_remove(mesh->dev_ntop);
}
mesh->terminate();
state->terminate();
ezcl_terminate();
if (numpe > 1) L7_Free(&mesh->cell_handle);
L7_Dev_Free();
delete mesh;
delete state;
// Release kernels and finalize the OpenCL elements.
ezcl_finalize();
//ezcl_mem_walk_all();
L7_Terminate();
exit(0);
} // Complete final output.
}