-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
reward-top-k-students.py
51 lines (46 loc) · 1.87 KB
/
reward-top-k-students.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Time: O(pf * l + nf * l + n * l + klogk)
# Space: O(pf * l + nf * l + n)
import random
import itertools
# quick select, partial sort
class Solution(object):
def topStudents(self, positive_feedback, negative_feedback, report, student_id, k):
"""
:type positive_feedback: List[str]
:type negative_feedback: List[str]
:type report: List[str]
:type student_id: List[int]
:type k: int
:rtype: List[int]
"""
def nth_element(nums, n, compare=lambda a, b: a < b):
def tri_partition(nums, left, right, target, compare):
mid = left
while mid <= right:
if nums[mid] == target:
mid += 1
elif compare(nums[mid], target):
nums[left], nums[mid] = nums[mid], nums[left]
left += 1
mid += 1
else:
nums[mid], nums[right] = nums[right], nums[mid]
right -= 1
return left, right
left, right = 0, len(nums)-1
while left <= right:
pivot_idx = random.randint(left, right)
pivot_left, pivot_right = tri_partition(nums, left, right, nums[pivot_idx], compare)
if pivot_left <= n <= pivot_right:
return
elif pivot_left > n:
right = pivot_left-1
else: # pivot_right < n.
left = pivot_right+1
pos, neg = set(positive_feedback), set(negative_feedback)
arr = []
for i, r in itertools.izip(student_id, report):
score = sum(3 if w in pos else -1 if w in neg else 0 for w in r.split())
arr.append((-score, i))
nth_element(arr, k-1)
return [i for _, i in sorted(arr[:k])]