-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
longest-increasing-subsequence-ii.py
61 lines (54 loc) · 1.85 KB
/
longest-increasing-subsequence-ii.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Time: O(nlogn)
# Space: O(n)
import bisect
# Range Maximum Query
class SegmentTree(object):
def __init__(self, N,
build_fn=lambda _: 0,
query_fn=lambda x, y: y if x is None else x if y is None else max(x, y),
update_fn=lambda x: x):
self.tree = [None]*(2*2**((N-1).bit_length()))
self.base = len(self.tree)//2
self.query_fn = query_fn
self.update_fn = update_fn
for i in xrange(self.base, self.base+N):
self.tree[i] = build_fn(i-self.base)
for i in reversed(xrange(1, self.base)):
self.tree[i] = query_fn(self.tree[2*i], self.tree[2*i+1])
def update(self, i, h):
x = self.base+i
self.tree[x] = self.update_fn(h)
while x > 1:
x //= 2
self.tree[x] = self.query_fn(self.tree[x*2], self.tree[x*2+1])
def query(self, L, R):
if L > R:
return 0
L += self.base
R += self.base
left = right = None
while L <= R:
if L & 1:
left = self.query_fn(left, self.tree[L])
L += 1
if R & 1 == 0:
right = self.query_fn(self.tree[R], right)
R -= 1
L //= 2
R //= 2
return self.query_fn(left, right)
# segment tree with coordinate compression
class Solution(object):
def lengthOfLIS(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
sorted_nums = sorted({x-1 for x in nums})
num_to_idx = {x:i for i, x in enumerate(sorted_nums)}
st = SegmentTree(len(num_to_idx))
for x in nums:
x -= 1
st.update(num_to_idx[x], st.query(bisect.bisect_left(sorted_nums, x-k), num_to_idx[x]-1)+1)
return st.tree[1] # st.query(0, len(num_to_idx)-1)