-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
sliding-puzzle.cpp
192 lines (182 loc) · 6.79 KB
/
sliding-puzzle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
// Time: O((m * n) * (m * n)!)
// Space: O((m * n) * (m * n)!)
// A* Search Algorithm
class Solution {
public:
int slidingPuzzle(vector<vector<int>>& board) {
const auto& R = board.size(), &C = board[0].size();
vector<int> begin, end;
unordered_map<int, pair<int, int>> expected;
int zero_idx = 0;
for (int i = 0; i < R; ++i) {
for (int j = 0; j < C; ++j) {
auto val = (C * i + j + 1) % (R * C);
expected[val] = {i, j};
if (board[i][j] == 0) {
zero_idx = begin.size();
}
begin.emplace_back(board[i][j]);
end.emplace_back(val);
}
}
int min_steps = heuristic_estimate(begin, R, C, expected);
unordered_set<vector<int>, Hash<vector<int>>> lookup;
vector<pair<int, vector<int>>> closer{make_pair(zero_idx, begin)}, detour;
while (true) {
if (closer.empty()) {
if (detour.empty()) {
return -1;
}
min_steps += 2;
swap(closer, detour);
}
int zero;
vector<int> board;
tie(zero, board) = closer.back(); closer.pop_back();
if (board == end) {
return min_steps;
}
if (!lookup.count(board)) {
lookup.emplace(board);
int r = zero / C;
int c = zero % C;
static const vector<pair<int, int>> directions{{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
for (const auto& direction : directions) {
int i = r + direction.first;
int j = c + direction.second;
if (0 <= i && i < R && 0 <= j && j < C) {
auto new_zero = C * i + j;
auto new_board = board;
swap(new_board[zero], new_board[new_zero]);
int r2, c2;
tie(r2, c2) = expected[board[new_zero]];
int r1 = zero / C;
int c1 = zero % C;
int r0 = new_zero / C;
int c0 = new_zero % C;
bool is_closer = dot({r1 - r0, c1 - c0}, {r2 - r0, c2 - c0}) > 0;
is_closer ? closer.emplace_back(new_zero, new_board) : detour.emplace_back(new_zero, new_board);
}
}
}
}
return min_steps;
}
private:
int heuristic_estimate(const vector<int>& board, int R, int C, const unordered_map<int, pair<int, int>>& expected) {
int result = 0;
for (int i = 0; i < R; ++i) {
for (int j = 0; j < C; ++j) {
const auto& val = board[C * i + j];
if (val == 0) {
continue;
}
int r, c;
tie(r, c) = expected.at(val);
result += abs(r - i) + abs(c - j);
}
}
return result;
}
inline int dot(const pair<int, int>& a, const pair<int, int>& b) {
return a.first * b.first + a.second * b.second;
}
template<typename ContType>
struct Hash {
size_t operator()(const ContType& v) const {
size_t seed = 0;
for (const auto& i : v) {
seed ^= std::hash<typename ContType::value_type>{}(i) + 0x9e3779b9 + (seed<<6) + (seed>>2);
}
return seed;
}
};
};
// Time: O((m * n) * (m * n)! * log((m * n)!))
// Space: O((m * n) * (m * n)!)
// A* Search Algorithm
class Solution2 {
public:
int slidingPuzzle(vector<vector<int>>& board) {
const auto& R = board.size(), &C = board[0].size();
vector<int> begin, end;
unordered_map<int, pair<int, int>> expected;
int zero_idx = 0;
for (int i = 0; i < R; ++i) {
for (int j = 0; j < C; ++j) {
auto val = (C * i + j + 1) % (R * C);
expected[val] = {i, j};
if (board[i][j] == 0) {
zero_idx = begin.size();
}
begin.emplace_back(board[i][j]);
end.emplace_back(val);
}
}
vector<int> end_wrong(end);
swap(end_wrong[end_wrong.size() - 2], end_wrong[end_wrong.size() - 3]);
using P = tuple<int, int, int, vector<int>>;
priority_queue<P, vector<P>, greater<P>> min_heap;
min_heap.emplace(make_tuple(0, 0, zero_idx, begin));
unordered_map<vector<int>, int, Hash<vector<int>>> lookup;
lookup[begin] = 0;
while (!min_heap.empty()) {
int f, g, zero;
vector<int> board;
tie(f, g, zero, board) = min_heap.top(); min_heap.pop();
if (board == end) {
return g;
}
if (board == end_wrong) {
return -1;
}
if (f > lookup[board]) {
continue;
}
int r = zero / C;
int c = zero % C;
static const vector<pair<int, int>> directions{{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
for (const auto& direction : directions) {
int i = r + direction.first;
int j = c + direction.second;
if (0 <= i && i < R && 0 <= j && j < C) {
auto new_zero = C * i + j;
auto new_board = board;
swap(new_board[zero], new_board[new_zero]);
f = g + 1 + heuristic_estimate(new_board, R, C, expected);
if (!lookup.count(new_board) || f < lookup[new_board])
lookup[new_board] = f;
min_heap.emplace(make_tuple(f, g + 1, new_zero, new_board));
}
}
}
}
return -1;
}
private:
int heuristic_estimate(const vector<int>& board, int R, int C, const unordered_map<int, pair<int, int>>& expected) {
int result = 0;
for (int i = 0; i < R; ++i) {
for (int j = 0; j < C; ++j) {
const auto& val = board[C * i + j];
if (val == 0) {
continue;
}
int r, c;
tie(r, c) = expected.at(val);
result += abs(r - i) + abs(c - j);
}
}
return result;
}
template<typename ContType>
struct Hash {
size_t operator()(const ContType& v) const {
size_t seed = 0;
for (const auto& i : v) {
seed ^= std::hash<typename ContType::value_type>{}(i) + 0x9e3779b9 + (seed<<6) + (seed>>2);
}
return seed;
}
};
};