-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
fibonacci-number.cpp
57 lines (53 loc) · 1.57 KB
/
fibonacci-number.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
// Time: O(logn)
// Space: O(1)
class Solution {
public:
int fib(int N) {
vector<vector<int>> T = {{1, 1},
{1, 0}};
return matrixMult({{1, 0}}, matrixExpo(T, N))[0][1]; // [a1, a0] * T^N
}
private:
vector<vector<int>> matrixExpo(const vector<vector<int>>& A, int pow) {
vector<vector<int>> result(A.size(), vector<int>(A.size()));
vector<vector<int>> A_exp(A);
for (int i = 0; i < A.size(); ++i) {
result[i][i] = 1;
}
while (pow) {
if (pow % 2 == 1) {
result = matrixMult(result, A_exp);
}
A_exp = matrixMult(A_exp, A_exp);
pow /= 2;
}
return result;
}
vector<vector<int>> matrixMult(const vector<vector<int>>& A, const vector<vector<int>>& B) {
vector<vector<int>> result(A.size(), vector<int>(B[0].size()));
for (int i = 0; i < A.size(); ++i) {
for (int j = 0; j < B[0].size(); ++j) {
int64_t entry = 0;
for (int k = 0; k < B.size(); ++k) {
entry = (static_cast<int64_t>(A[i][k]) * B[k][j] + entry);
}
result[i][j] = static_cast<int>(entry);
}
}
return result;
}
};
// Time: O(n)
// Space: O(1)
class Solution2 {
public:
int fib(int N) {
vector<int> dp(3, 0);
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= N; ++i) {
dp[i % 3] = dp[(i - 1) % 3] + dp[(i - 2) % 3];
}
return dp[N % 3];
}
};