-
Notifications
You must be signed in to change notification settings - Fork 0
/
reclamation.v
794 lines (697 loc) · 28.2 KB
/
reclamation.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
From smr.algebra Require Import coPset.
From smr.logic Require Import token2.
From iris.base_logic.lib Require Import invariants ghost_map.
From smr.base_logic.lib Require Import coP_ghost_map ghost_vars coP_cancellable_invariants mono_list.
From smr.lang Require Import proofmode notation.
From smr Require Import helpers smr_common.
From iris.prelude Require Import options.
From smr Require Import helpers.
(* Shield id 1%positive is reserved for Managed *)
Definition gid : positive := 1.
(* Shield id from slot index, for ghost map *)
Definition ssid (s : nat) : positive := Pos.succ $ Pos.of_succ_nat s.
(* Shield id from slot index, for tokens and vars2 *)
Definition sid := Pos.of_succ_nat.
(* Shield ids of slots [0..s] (exclusive) *)
Definition sids_to (s : nat) : coPset :=
list_to_set (sid <$> (seq 0 s)).
(* Set of shield ids of slots [s..∞]. Example: [sidx_ex (length slist)] *)
Definition sids_from (s : nat) : coPset :=
⊤ ∖ sids_to s.
Definition sids_from' (s : nat) : coPneset :=
coPneset_complement (list_to_set (sid <$> (seq 0 s))).
(* Sets of shields ids [s1..s2] (exclusive) *)
Definition sids_range (s1 s2 : nat) : coPset :=
list_to_set (sid <$> (seq s1 (s2 - s1))).
Section token.
Context `{!token2G Σ}.
(* tokens for pointer ids [I] and shield ids [S] *)
Definition toks γ (I S : coPset) : iProp Σ :=
token2 γ I S.
(* a token for pointer id [i] and *slot index* [s] *)
Definition stok γ (i : positive) (s : nat) : iProp Σ :=
toks γ {[i]} {[sid s]}.
Definition stoks γ (I : coPset) (s : nat) : iProp Σ :=
toks γ I {[sid s]}.
(* the special token owned by [Managed] *)
Definition gtok γ (i : positive) : iProp Σ :=
toks γ {[i]} {[gid]}.
End token.
Class reclamationG Σ := ReclamationG {
recl_tokenG :> token2G Σ;
(* id ↪□ (allocation, cinv gname) *)
recl_infoG :> ghost_mapG Σ positive (alloc * gname); (* γinfo *)
recl_dataG :> ghost_mapG Σ positive gname; (* γdata *)
(* allocation status *)
recl_ptrsG :> coP_ghost_mapG Σ blk positive; (* γptrs *)
recl_cinvG :> coP_cinvG Σ; (* γtok *)
recl_varsG :> ghost_varsG Σ bool; (* γU *)
recl_vars2G :> ghost_vars2G Σ bool; (* γV, γR *)
}.
Definition reclamationΣ : gFunctors :=
#[ token2Σ;
ghost_mapΣ positive (alloc * gname);
ghost_mapΣ positive gname;
(* mono_listΣ positive (blk * gname * gname); *)
coP_ghost_mapΣ blk positive;
coP_cinvΣ;
ghost_varsΣ bool;
ghost_vars2Σ bool ].
Global Instance subG_reclamationΣ Σ :
subG reclamationΣ Σ → reclamationG Σ.
Proof. solve_inG. Qed.
Section defs.
Context `{!reclamationG Σ, !heapGS Σ}.
Context (base_mgmtN base_ptrsN : namespace) (DISJ : base_mgmtN ## base_ptrsN).
(* Managed ghost names. Add to reclamationG? *)
Context (γtok γinfo γdata γptrs γU γR γV : gname).
Implicit Types
(γc : gname) (R : resource Σ).
(* Hack: we have @ "base" so that namespaces used by rcu_base.v have "base"
after the namespace given by rcu_{simple,traversal} *)
Definition exchN (p : blk) (i : positive) := base_mgmtN .@ "base" .@ "exch" .@ p .@ i.
Definition resN (p : blk) (i : positive) := base_ptrsN .@ p .@ "base" .@ i.
(* Exchanges a token for pointer ownership *)
Definition Exchanges' (p : blk) (i : positive) (γc_i : gname) : iProp Σ :=
( (* exchange cancelled; holds all the tokens *)
toks γtok {[i]} ⊤
) ∨
( (* holds a finite set of tokens *)
∃ (ss : gset nat),
p ↪c[γptrs]{coPneset_complement (set_map ssid ss ∪ {[gid]})} i ∗
coP_cinv_own γc_i (coPneset_complement (set_map ssid ss ∪ {[gid]})) ∗
toks γtok {[i]} (gset_to_coPset (set_map sid ss))
) ∨
( (* holds a cofinite set, but not ⊤, of tokens *)
∃ (ssc : gset nat) (cossc : coPneset),
⌜coPneset_coPset cossc = gset_to_coPset (set_map ssid ssc)⌝ ∗
p ↪c[γptrs]{cossc} i ∗
coP_cinv_own γc_i cossc ∗
toks γtok {[i]} (⊤ ∖ gset_to_coPset (set_map sid ssc))
).
Definition Exchanges (p : blk) (i : positive) (γc_i : gname) : iProp Σ :=
inv (exchN p i) (Exchanges' p i γc_i).
Definition ResourceCInv p i γc_i size_i R :=
coP_cinv (resN p i) γc_i (∃ vl, ⌜length vl = size_i⌝ ∗ R p vl i ∗ p ↦∗ vl).
(* Transforms block resource on logical name to block resource on the pointer id. *)
Definition wrap_resource R data_i : resource Σ :=
(λ p vl i, i ↪[γdata]□ data_i ∗ R p vl data_i)%I.
Definition NodeInfoBase (p : blk) (i : positive) (size_i : nat) R : iProp Σ :=
∃ γc_i,
i ↪[γinfo]□ ({| addr := p; len := size_i |}, γc_i) ∗
Exchanges p i γc_i ∗
ResourceCInv p i γc_i size_i R.
(* NOTE: To avoid laters, separate out [Exchanges] and [ResourceCInv] as [NodeInfo]. *)
Definition ManagedBase (p : blk) (i : positive) (size_i : nat) R : iProp Σ :=
∃ γc_i,
coP_cinv_own γc_i {[gid]} ∗
i ↪[γinfo]□ ({| addr := p; len := size_i |}, γc_i) ∗
p ↪c[γptrs]{{[gid]}} i ∗
Exchanges p i γc_i ∗
ResourceCInv p i γc_i size_i R ∗
i ↦p[γU]{1/2} false ∗
({[i]},⊤) ↦P2[γR]{ 1/2 } false.
Definition RetiredBase (p : blk) (i : positive) (size_i : nat) R : iProp Σ :=
∃ γc_i,
coP_cinv_own γc_i {[gid]} ∗
i ↪[γinfo]□ ({| addr := p; len := size_i |}, γc_i) ∗
p ↪c[γptrs]{{[gid]}} i ∗
Exchanges p i γc_i ∗
ResourceCInv p i γc_i size_i R ∗
i ↦p[γU]{1/2} true ∗
({[i]},⊤) ↦P2[γR]{ 1/2 } false.
Definition Retired (p : blk) (i : positive) (size_i : nat) R : iProp Σ :=
∃ data_i, RetiredBase p i size_i (wrap_resource R data_i).
Definition ReclaimingBase (p : blk) (i : positive) (size_i : nat) R : iProp Σ :=
∃ γc_i,
coP_cinv_own γc_i {[gid]} ∗
i ↪[γinfo]□ ({| addr := p; len := size_i |}, γc_i) ∗
p ↪c[γptrs]{{[gid]}} i ∗
Exchanges p i γc_i ∗
ResourceCInv p i γc_i size_i R ∗
i ↦p[γU]{1/2} true.
Definition Reclaiming (p : blk) (i : positive) (size_i : nat) R : iProp Σ :=
∃ data_i, ReclaimingBase p i size_i (wrap_resource R data_i).
(* [Retired] becomes [Reclaimed]. *)
Definition Reclaimed (i : positive) : iProp Σ :=
i ↦p[γU]{1/2} true ∗
({[i]},⊤) ↦P2[γR]{ 1/2 } true.
Definition ProtectedBase (s : nat) (i : positive) (p : blk) R size_i : iProp Σ :=
∃ γc_i,
i ↪[γinfo]□ ({| addr := p; len := size_i |}, γc_i) ∗
p ↪c[γptrs]{{[ssid s]}} i ∗
coP_cinv_own γc_i {[ssid s]} ∗
Exchanges p i γc_i ∗
ResourceCInv p i γc_i size_i R ∗
(i, sid s) ↦p2[γV]{ 1/2 } true.
End defs.
Section lemmas.
Context `{!reclamationG Σ, !heapGS Σ}.
(* sid, ssid, gid *)
Lemma ssid_neq_gid n : ssid n ≠ gid.
Proof. unfold ssid, gid. lia. Qed.
Global Instance sid_injective : Inj (=) (=) sid.
Proof. unfold sid. apply _. Qed.
Global Instance ssid_injective : Inj (=) (=) ssid.
Proof. unfold ssid. intro. lia. Qed.
Lemma sid_to_idx (s : positive) : ∃ n, s = sid n.
Proof. unfold sid. exists (Nat.pred (Pos.to_nat s)). lia. Qed.
(* sids_to *)
Lemma sids_to_0 : sids_to 0 = ∅.
Proof. done. Qed.
Lemma sids_from_0 : sids_from 0 = ⊤.
Proof. rewrite /sids_from sids_to_0. set_solver. Qed.
Lemma sids_from'_0 : sids_from' 0 = ⊤.
Proof. rewrite /sids_from' coPneset_eq. set_solver. Qed.
Lemma sids_to_S n : sids_to (S n) = sids_to n ∪ {[sid n]}.
Proof. unfold sids_to. rewrite seq_S. set_solver. Qed.
Lemma sids_to_gset n :
gset_to_coPset (list_to_set (sid <$> seq 0 n)) = sids_to n.
Proof.
unfold sids_to. induction n as [|n IH]. { set_solver. }
rewrite -Nat.add_1_r seq_app fmap_app !list_to_set_app_L.
rewrite gset_to_coPset_union. rewrite IH. f_equal.
rewrite Nat.add_0_l.
assert (list_to_set (sid <$> seq n 1) = ({[sid n]} : gset positive)) as ->.
{ simpl. set_solver. } rewrite gset_to_coPset_singleton. set_solver.
Qed.
Lemma sids_range_fold s1 s :
list_to_set (sid <$> (seq s1 s)) = sids_range s1 (s1+s).
Proof. unfold sids_range. replace (s1+s-s1) with s by lia. done. Qed.
Lemma sids_to_sids_range n : sids_range 0 n = sids_to n.
Proof. unfold sids_range. replace (n-0) with n by lia. done. Qed.
Lemma NoDup_sids_to_inner n :
NoDup (sid <$> seq 0 n).
Proof.
rewrite NoDup_fmap.
induction n as [|n IH]; [by apply NoDup_nil|].
rewrite -Nat.add_1_r seq_app NoDup_app.
split_and!; [done| |by apply NoDup_singleton].
intros m ElemOf. simpl. rewrite elem_of_seq in ElemOf.
rewrite elem_of_list_singleton. lia.
Qed.
Lemma sids_to_sid_disjoint m n :
m ≤ n →
sids_to m ## {[sid n]}.
Proof.
induction m; intros; first set_solver.
rewrite sids_to_S. apply disjoint_union_l. split.
- apply IHm. lia.
- apply disjoint_singleton_r, not_elem_of_singleton.
unfold sid. lia.
Qed.
Lemma sids_to_not_elem_of m n :
m ≤ n →
sid n ∉ sids_to m.
Proof. rewrite -disjoint_singleton_r. apply sids_to_sid_disjoint. Qed.
Lemma sids_from_not_elem_of m n :
n < m →
sid n ∉ sids_from m.
Proof.
intros. assert (sid n ∈ sids_to m); last first.
{ rewrite not_elem_of_difference. by right. }
rewrite elem_of_list_to_set.
apply elem_of_list_fmap_1, elem_of_seq. lia.
Qed.
Lemma sids_from_sid_disjoint m n :
n < m →
sids_from m ## {[sid n]}.
Proof. intros. apply disjoint_singleton_r, sids_from_not_elem_of. lia. Qed.
Lemma sids_from'_sid_disjoint m n :
n < m →
sids_from' m ## {[sid n]}.
Proof.
intros. unfold sids_from'.
rewrite coPneset_disj_iff. simpl.
rewrite !sids_to_gset. fold (sids_from m).
apply sids_from_sid_disjoint. done.
Qed.
Lemma sids_from_S n :
sids_from n = sids_from (S n) ∪ {[sid n]}.
Proof.
unfold sids_from. rewrite sids_to_S difference_union_distr_r_L.
rewrite top_intersection_difference.
rewrite -(union_difference_L' {[sid n]} (⊤ ∖ sids_to n)); auto.
rewrite -disjoint_complement.
symmetry. by apply sids_to_sid_disjoint.
Qed.
Lemma sids_from'_S n :
sids_from' n = sids_from' (S n) ∪ {[sid n]}.
Proof.
unfold sids_from'.
rewrite coPneset_eq coPneset_union_eq -Nat.add_1_r /=.
rewrite !sids_to_gset Nat.add_1_r.
fold (sids_from n) (sids_from (S n)).
apply sids_from_S.
Qed.
Lemma sids_to_sids_from_union n :
sids_to n ∪ sids_from n = ⊤.
Proof. rewrite /sids_from (comm_L union) -top_union_difference //. Qed.
Lemma sids_to_sids_from_complement n :
sids_to n = ⊤ ∖ sids_from n.
Proof. unfold sids_from. rewrite difference_difference_r_L; set_solver. Qed.
Lemma sids_range_split (s1 s2 s3 : nat) :
s1 ≤ s2 ≤ s3 →
sids_range s1 s3 = sids_range s1 s2 ∪ sids_range s2 s3.
Proof.
intros. unfold sids_range. rewrite -list_to_set_app_L -fmap_app.
rewrite (_ : s3 - s1 = (s2 - s1) + (s3 - s2)); last lia.
have Hs2 : s2 = s1 + (s2 - s1) by lia.
rewrite [in seq s2 _]Hs2. rewrite -seq_app. rewrite -Hs2. done.
Qed.
Lemma sids_range_empty (s : nat) :
sids_range s s = ∅.
Proof. unfold sids_range. rewrite Nat.sub_diag //. Qed.
Lemma sids_range_singleton (s : nat) :
sids_range s (s + 1) = {[sid s]}.
Proof. unfold sids_range. have -> : s + 1 - s = 1 by lia. simpl. set_solver. Qed.
Lemma sids_range_cons (s1 s2 : nat) :
s1 < s2 →
sids_range s1 s2 = {[sid s1]} ∪ sids_range (s1 + 1) s2.
Proof. intros. rewrite -sids_range_singleton -sids_range_split //. lia. Qed.
Lemma sids_to_sids_from_disjoint n :
sids_to n ## sids_from n.
Proof. rewrite sids_to_sids_from_complement. set_solver. Qed.
Lemma sids_range_disjoint s1 s2 s3 s4 :
s2 ≤ s3 →
sids_range s1 s2 ## sids_range s3 s4.
Proof.
intros. unfold sids_range. intro.
do 2 rewrite elem_of_list_to_set.
do 2 rewrite elem_of_list_fmap.
intros [y0 [H0x H0in]] [y1 [H1x H1in]]; subst.
apply sid_injective in H1x; subst.
rewrite elem_of_seq in H0in.
rewrite elem_of_seq in H1in.
lia.
Qed.
Lemma sids_from_prefix (s1 s2 : nat) :
s1 ≤ s2 →
sids_from s1 = sids_range s1 s2 ∪ sids_from s2.
Proof.
intros. unfold sids_from,sids_to,sids_range.
rewrite (comm_L union).
have [s Hs2] : ∃ s, s2 = s1 + s by exists (s2 - s1); lia.
rewrite Hs2. replace (s1 + s - s1) with s by lia.
rewrite seq_app fmap_app list_to_set_app_L. rewrite Nat.add_0_l.
rewrite -difference_difference_l_L.
rewrite -union_difference_L'; first done.
rewrite -disjoint_complement.
do 2 rewrite sids_range_fold.
symmetry. by apply sids_range_disjoint.
Qed.
(* NOTE: disjoint lemmas are not fully general, but good enough? *)
Lemma sids_range_sids_from_disjoint (s1 s2 : nat) :
s1 ≤ s2 →
sids_range s1 s2 ## sids_from s2.
Proof.
intros. unfold sids_range, sids_from, sids_to. intro.
rewrite elem_of_list_to_set elem_of_difference.
rewrite not_elem_of_list_to_set.
do 2 rewrite elem_of_list_fmap.
intros [y [-> Hy1]] [_ Hy2]. apply Hy2.
exists y. split; auto.
rewrite elem_of_seq. rewrite elem_of_seq in Hy1. lia.
Qed.
Lemma sid_sids_range_disjoint_cons (s1 s2 : nat) :
{[sid s1]} ## sids_range (s1 + 1) s2.
Proof. rewrite -sids_range_singleton. by apply sids_range_disjoint. Qed.
Lemma sids_range_0_sids_to (s : nat) :
sids_range 0 s = sids_to s.
Proof. unfold sids_range, sids_to. rewrite Nat.sub_0_r //. Qed.
Lemma sids_from_infinite n :
set_infinite (sids_from n).
Proof.
unfold sids_from, sids_to. apply difference_infinite.
- apply top_infinite.
- apply list_to_set_finite.
Qed.
Lemma sids_from_nonempty n :
sids_from n ≠ ∅.
Proof.
intro. eapply set_not_infinite_finite.
- apply sids_from_infinite.
- erewrite H. exists []. set_solver.
Qed.
Lemma big_sepL_sids_range_1 {PROP : bi} (Φ : coPset → PROP) `{!∀ x, Affine (Φ x)} {A}
(s1 s2 : nat) (slist12 : list A) :
(∀ E1 E2, E1 ## E2 → Φ E1 ∗ Φ E2 ⊣⊢ Φ (E1 ∪ E2)) →
length slist12 = s2 - s1 →
Φ (sids_range s1 s2) -∗ [∗ list] k ↦ _ ∈ slist12, Φ {[sid (s1 + k)]}.
Proof.
iIntros (Hhomo Hlen) "range12".
iInduction slist12 as [|] "IH" forall (s1 s2 Hlen).
{ rewrite big_sepL_nil //. }
rewrite cons_length in Hlen.
have LE12 : s1 < s2 by lia.
have {}Hlen : length slist12 = s2 - (s1 + 1) by lia.
rewrite big_sepL_cons. rewrite Nat.add_0_r.
rewrite (sids_range_cons _ _ LE12).
rewrite -Hhomo; last apply sid_sids_range_disjoint_cons.
iDestruct "range12" as "[$ range1'2]".
iSpecialize ("IH" $! (s1+1) s2 with "[%] range1'2"); first lia.
(* NOTE: setoid_rewrite didn't work *)
iApply (big_sepL_mono with "IH").
iIntros (k??) "?". replace (s1 + 1 + k) with (s1 + S k) by lia. done.
Qed.
Lemma big_sepL_sids_range_2 {PROP : bi} (Φ : coPset → PROP)
`{!∀ x, Affine (Φ x), !∀ x, Absorbing (Φ x)} {A}
(s1 s2 : nat) (slist12 : list A) :
(∀ E1 E2, E1 ## E2 → Φ E1 ∗ Φ E2 ⊣⊢ Φ (E1 ∪ E2)) →
length slist12 = s2 - s1 →
slist12 ≠ [] →
([∗ list] k ↦ _ ∈ slist12, Φ {[sid (s1 + k)]}) -∗ Φ (sids_range s1 s2).
Proof.
intros Hhomo Hlen.
have HH : ([∗ list] k ↦ _ ∈ slist12, Φ {[sid (s1 + k)]}) -∗
⌜slist12 = []⌝ ∨ Φ (sids_range s1 s2); last first.
{ iIntros (NE) "X". iDestruct (HH with "X") as "[%|?]"; done. }
iIntros "range12".
iInduction slist12 as [|] "IH" forall (s1 s2 Hlen).
{ rewrite big_sepL_nil //. by iLeft. }
iRight.
rewrite cons_length in Hlen.
have LE12 : s1 < s2 by lia.
have {}Hlen : length slist12 = s2 - (s1 + 1) by lia.
rewrite big_sepL_cons. rewrite Nat.add_0_r.
rewrite (sids_range_cons _ _ LE12).
rewrite -Hhomo; last apply sid_sids_range_disjoint_cons.
iDestruct "range12" as "[? range1'2]". (* Should not frame s1 here. *)
iSpecialize ("IH" $! (s1+1) s2 with "[%] [range1'2]"); first lia.
{ iApply (big_sepL_mono with "range1'2").
iIntros (k??) "?". replace (s1 + 1 + k) with (s1 + S k) by lia. done. }
iDestruct "IH" as "[%|$]"; last by iFrame.
subst slist12. simpl in *. assert (s2 = s1 + 1) as -> by lia.
replace (sids_range (s1 + 1) (s1 + 1)) with (∅ : coPset); last first.
{ unfold sids_range. rewrite Nat.sub_diag //. }
rewrite Hhomo; last set_solver. rewrite right_id_L //.
Qed.
(* toks *)
Lemma toks_valid_1 γ E1A E1B E2 :
E2 ≠ ∅ →
toks γ E1A E2 -∗ toks γ E1B E2 -∗ ⌜E1A ## E1B⌝.
Proof.
iIntros (H) "T1 T2".
iDestruct (token2_valid_1 with "T1 T2") as "%"; auto.
Qed.
Lemma toks_valid_2 γ E1 E2A E2B :
E1 ≠ ∅ →
toks γ E1 E2A -∗ toks γ E1 E2B -∗ ⌜E2A ## E2B⌝.
Proof.
iIntros (H) "T1 T2".
iDestruct (token2_valid_2 with "T1 T2") as "%"; auto.
Qed.
Lemma toks_union_1 γ E1A E1B E2 :
E1A ## E1B →
toks γ E1A E2 ∗ toks γ E1B E2 ⊣⊢ toks γ (E1A ∪ E1B) E2.
Proof.
intros. iIntros. iSplit.
- iIntros "[T1 T2]".
iApply token2_union_1; auto. iFrame.
- iIntros "T".
iDestruct (token2_union_1 with "T") as "[T1 T2]"; auto. iFrame.
Qed.
Lemma toks_union_2 γ E1 E2A E2B :
E2A ## E2B →
toks γ E1 E2A ∗ toks γ E1 E2B ⊣⊢ toks γ E1 (E2A ∪ E2B).
Proof.
intros. iIntros. iSplit.
- iIntros "[T1 T2]".
iApply token2_union_2; auto. iFrame.
- iIntros "T".
iDestruct (token2_union_2 with "T") as "[T1 T2]"; auto. iFrame.
Qed.
Lemma toks_delete_1 γ E1 E2 X :
X ⊆ E1 →
toks γ E1 E2 ⊣⊢ toks γ (E1 ∖ X) E2 ∗ toks γ X E2.
Proof. intros. rewrite toks_union_1; last set_solver. by rewrite -union_difference_L'. Qed.
Lemma toks_delete_2 γ E1 E2 X :
X ⊆ E2 →
toks γ E1 E2 ⊣⊢ toks γ E1 (E2 ∖ X) ∗ toks γ E1 X.
Proof. intros. rewrite toks_union_2; last set_solver. by rewrite -union_difference_L'. Qed.
Lemma toks_get_empty_1 γ E :
⊢ |==> toks γ ∅ E.
Proof. unfold toks. iApply token2_get_empty_1. Qed.
Lemma toks_get_empty_2 γ E :
⊢ |==> toks γ E ∅.
Proof. unfold toks. iApply token2_get_empty_2. Qed.
(* exchanges *)
Lemma exchange_toks_give_all γtok γptrs γc_i
(N : namespace) E (p : blk) (i : positive) :
↑exchN N p i ⊆ E →
Exchanges N γtok γptrs p i γc_i -∗
toks γtok {[i]} ⊤
={E}=∗
p ↪c[γptrs]{coPneset_complement {[gid]}} i ∗
coP_cinv_own γc_i (coPneset_complement {[gid]}).
Proof.
iIntros (?) "#Ex TII".
iInv "Ex" as ">[Ex'|[Ex'|Ex']]".
- (* ⊤: contradiction since I have all tokens *)
iDestruct ((toks_valid_2 _ _ _ ⊤) with "TII Ex'") as "%"; set_solver.
- (* finite: should be empty, give all, get all *)
iDestruct "Ex'" as (ss) "(pi & cinv & TIS)".
iDestruct (toks_valid_2 with "TII TIS") as "%NotIn"; [set_solver|].
assert (gset_to_coPset (set_map sid ss) = ∅) by set_solver.
apply gset_to_coPset_empty_inv in H0.
assert (ss = ∅) by set_solver. subst.
rewrite set_map_empty union_empty_l_L.
iSplitR "pi cinv"; iFrame; auto.
- (* cofinite: contradiction since I have all tokens *)
iDestruct "Ex'" as (ssc cossc Hco) "(pi & cinv & TIE)".
iDestruct (toks_valid_2 with "TII TIE") as "%NotIn"; [set_solver|].
by apply top_disjoint_difference_gset_to_coPset in NotIn.
Qed.
Lemma exchange_stok_give_token_set (ssc : gset nat) (idx : nat) :
idx ∈ ssc →
⊤ ∖ gset_to_coPset (set_map sid ssc) ∪ {[sid idx]} =
⊤ ∖ gset_to_coPset (set_map sid (ssc ∖ {[idx]})).
Proof.
intros.
rewrite set_map_difference_L gset_to_coPset_difference.
rewrite set_map_singleton_L gset_to_coPset_singleton.
rewrite difference_difference_r; auto.
rewrite singleton_subseteq_l.
rewrite elem_of_gset_to_coPset elem_of_map. eauto.
Qed.
Lemma exchange_stok_give γtok γptrs γc_i
(N : namespace) E (p : blk) (i : positive) (idx : nat) :
↑exchN N p i ⊆ E →
Exchanges N γtok γptrs p i γc_i -∗
stok γtok i idx -∗
|={E}=> (
p ↪c[γptrs]{{[ssid idx]}} i ∗
coP_cinv_own γc_i {[ssid idx]}
).
Proof.
iIntros (?) "#Ex TII".
iInv "Ex" as ">[Ex'|[Ex'|Ex']]".
- (* ⊤: contradiction since I have a token *)
iDestruct ((toks_valid_2 _ _ _ ⊤) with "TII Ex'") as "%"; set_solver.
- (* finite: add idx to ss *)
iDestruct "Ex'" as (ss) "(pi & cinv & TIS)".
iDestruct (toks_valid_2 with "TII TIS") as "%NotIn"; [set_solver|].
(* give token *)
iCombine "TIS TII" as "TISi".
rewrite toks_union_2; auto.
iModIntro.
rewrite -(gset_to_coPset_singleton (sid idx)) -gset_to_coPset_union.
assert (set_map sid ss ∪ {[sid idx]} = set_map sid (ss ∪ {[idx]})) as ->.
{ rewrite set_map_union_L. set_solver. }
rewrite disjoint_singleton_l in NotIn.
(* separate pi and cinv *)
rewrite elem_of_gset_to_coPset in NotIn.
rewrite (complement_insert (set_map ssid ss ∪ {[gid]}) (ssid idx)); last first.
{ apply not_elem_of_union. split; intro In.
- apply elem_of_map in In.
destruct In as [x [IdEQ In]]. apply ssid_injective in IdEQ.
subst. apply NotIn, elem_of_map; eauto.
- apply elem_of_singleton in In. by apply ssid_neq_gid in In. }
rewrite coP_ghost_map_elem_fractional; last first.
{ apply coPneset_disj_elem_of. set_solver. }
iDestruct "pi" as "[pi spi]".
rewrite coP_cinv_own_fractional; last first.
{ apply coPneset_disj_elem_of. set_solver. }
iDestruct "cinv" as "[cinv scinv]".
(* close *)
iSplitR "pi cinv"; iFrame; auto.
iNext. iRight; iLeft. iExists _. iFrame "∗#%".
rewrite set_map_union_L set_map_singleton_L.
assert (∀ (X Y Z : gset positive), X ∪ Y ∪ Z = X ∪ Z ∪ Y) as EQ by set_solver.
rewrite EQ. iFrame.
- (* cofinite: remove idx from ssc *)
iDestruct "Ex'" as (ssc cossc Hco) "(pi & cinv & TIE)".
iDestruct (toks_valid_2 with "TII TIE") as "%NotIn"; [set_solver|].
assert (idx ∈ ssc) as Hin.
{ destruct (decide (idx ∈ ssc)); auto.
rewrite disjoint_singleton_l elem_of_complement in NotIn.
exfalso. apply NotIn.
rewrite elem_of_gset_to_coPset elem_of_map.
intro. destruct H0 as [x [Hsid Hx]].
apply sid_injective in Hsid. set_solver. }
(* prove non-empty *)
assert (ssc ≠ ∅) as Hne.
{ intro. subst.
rewrite set_map_empty gset_to_coPset_empty in Hco.
exfalso. by eapply coPneset_nonempty. }
(* give token *)
iCombine "TIE TII" as "TIEi". rewrite toks_union_2; auto.
rewrite exchange_stok_give_token_set; auto.
iModIntro.
(* close if ssc = {[idx]} *)
destruct (decide (ssc = {[idx]})).
{ subst.
rewrite difference_diag_L set_map_empty.
rewrite gset_to_coPset_empty difference_empty_L.
rewrite set_map_singleton_L gset_to_coPset_singleton in Hco.
apply coPneset_is_singleton in Hco. subst.
iSplitL "TIEi"; iFrame. done. }
(* get ↪c and cinv *)
assert (idx ∈ ssc) as Hi.
{ apply disjoint_subset in NotIn as Hsub.
apply elem_of_subseteq_singleton in Hsub.
apply elem_of_gset_to_coPset, elem_of_map in Hsub.
destruct Hsub as [x [Hsidx Hssc]].
apply sid_injective in Hsidx. by subst. }
assert (ssc ∖ {[idx]} ≠ ∅) as Hine.
{ intro. apply empty_difference_subseteq_L in H0.
by apply subset_of_singleton in H0 as [H0|H0]. }
remember (gset_to_coPset (set_map ssid (ssc ∖ {[idx]}))) as co1.
assert (co1 ≠ ∅) as co1ne.
{ intro. subst.
apply gset_to_coPset_empty_inv in H0. set_solver. }
apply coPneset_construct in co1ne as [co1E Hco1E].
assert (cossc = co1E ∪ {[ssid idx]}).
{ apply coPneset_eq. simpl.
rewrite Hco Hco1E Heqco1.
rewrite -gset_to_coPset_singleton -gset_to_coPset_union.
assert (set_map ssid (ssc ∖ {[idx]}) ∪ {[ssid idx]} =
set_map ssid (ssc ∖ {[idx]} ∪ {[idx]})) as ->.
{ rewrite set_map_union_L. set_solver. }
rewrite -gset_union_difference_L'; set_solver. }
subst.
assert (co1E ## {[ssid idx]}).
{ unfold disjoint, coPneset_disjoint. simpl.
rewrite Hco1E disjoint_singleton_r. intro.
rewrite elem_of_gset_to_coPset in H0. set_solver. }
iDestruct (coP_ghost_map_elem_fractional with "pi") as "[pi pis]"; auto.
iDestruct (coP_cinv_own_fractional with "cinv") as "[cinv cis]"; auto.
(* close *)
iSplitL "TIEi pi cinv".
+ iRight; iRight. repeat iExists _. iFrame "∗#%".
+ by iFrame.
Qed.
Lemma exchange_stok_get_token_set (ssc : gset nat) idx :
idx ∉ ssc →
⊤ ∖ gset_to_coPset (set_map sid ssc) =
⊤ ∖ gset_to_coPset (set_map sid (ssc ∪ {[idx]})) ∪ {[sid idx]}.
Proof.
intros.
rewrite set_map_union_L gset_to_coPset_union.
rewrite set_map_singleton_L gset_to_coPset_singleton.
rewrite difference_union_difference.
rewrite -union_difference_L'; auto.
rewrite singleton_subseteq_l elem_of_difference. split; [set_solver|].
rewrite elem_of_gset_to_coPset elem_of_map.
intro. destruct H0 as [x [Hsid Hx]].
apply sid_injective in Hsid. set_solver.
Qed.
Lemma exchange_stok_get γtok γptrs γc_i
(N : namespace) E p i idx :
↑exchN N p i ⊆ E →
Exchanges N γtok γptrs p i γc_i -∗
p ↪c[γptrs]{{[ssid idx]}} i -∗
coP_cinv_own γc_i {[ssid idx]} -∗
|={E}=> stok γtok i idx.
Proof.
iIntros (?) "#Ex pi cinv".
iInv "Ex" as ">[Ex'|[Ex'|Ex']]".
- (* ⊤: remove idx from ⊤ *)
rewrite (top_union_difference {[sid idx]}).
iDestruct (toks_union_2 with "Ex'") as "[TIE TII]"; [set_solver|].
iModIntro. iSplitR "TII"; auto.
iRight; iRight. iExists {[idx]}, _. iFrame.
do 2 rewrite set_map_singleton_L.
do 2 rewrite gset_to_coPset_singleton. auto.
- (* finite: remove idx from ss *)
iDestruct "Ex'" as (ss) "(Expi & Excinv & TIS)".
iDestruct (coP_ghost_map.coP_ghost_map_elem_valid_2
with "pi Expi") as "%".
destruct H0 as [H0 _].
apply coPneset_disj_elem_of in H0 as H0'.
(* give p↪, cinv *)
iCombine "pi Expi" as "Expi".
rewrite -coP_ghost_map_elem_fractional; auto.
iCombine "cinv Excinv" as "Excinv".
rewrite -coP_cinv_own_fractional; auto.
(* separate token *)
apply coPneset_disj_elem_of in H0.
apply elem_of_union in H0; destruct H0; last first.
{ by apply elem_of_singleton, ssid_neq_gid in H0. }
rewrite (union_difference_L {[sid idx]} (set_map sid ss)); last first.
{ rewrite elem_of_map in H0.
destruct H0 as [x [H0 H1]]. apply ssid_injective in H0.
subst. rewrite singleton_subseteq_l elem_of_map; eauto. }
rewrite gset_to_coPset_union -toks_union_2; last first.
{ rewrite gset_to_coPset_difference gset_to_coPset_singleton.
set_solver. }
rewrite gset_to_coPset_singleton.
iDestruct "TIS" as "[TII TISx]".
(* close *)
iModIntro. iSplitR "TII"; auto.
rewrite -complement_delete; last set_solver.
rewrite difference_union_distr_l_L.
rewrite (difference_disjoint_L {[gid]}); last first.
{ apply disjoint_singleton_r. intro.
by apply elem_of_singleton, ssid_neq_gid in H1. }
assert (set_map ssid ss ∖ {[ssid idx]} = set_map ssid (ss ∖ {[idx]})) as ->.
{ rewrite set_map_difference_L. set_solver. }
assert (set_map sid ss ∖ {[sid idx]} = set_map sid (ss ∖ {[idx]})) as ->.
{ rewrite set_map_difference_L. set_solver. }
iRight; iLeft. iExists _. iFrame "∗#%".
- (* cofinite: add idx to ss *)
iDestruct "Ex'" as (ssc cossc Hco) "(Expi & Excinv & TIE)".
iDestruct (coP_ghost_map_elem_valid_2 with "Expi pi") as %[D _].
assert (idx ∉ ssc) as Hnotin.
{ revert D.
unfold disjoint, coPneset_disjoint; simpl.
rewrite Hco disjoint_singleton_r.
rewrite elem_of_gset_to_coPset elem_of_map.
intros. intro. apply D. eauto. }
(* give p↪, cinv *)
iCombine "Expi pi" as "pi".
rewrite -coP_ghost_map_elem_fractional; auto.
iCombine "Excinv cinv" as "cinv".
rewrite -coP_cinv_own_fractional; auto.
(* separate token *)
rewrite (exchange_stok_get_token_set _ idx); auto.
rewrite -toks_union_2; last first.
{ symmetry. apply disjoint_subset.
rewrite set_map_union_L gset_to_coPset_union.
rewrite set_map_singleton_L gset_to_coPset_singleton.
set_solver. }
iDestruct "TIE" as "[TIE T]".
(* close *)
iModIntro.
iSplitL "TIE pi cinv".
+ iRight; iRight. iExists _,_. iFrame "∗#%". iPureIntro.
simpl. rewrite Hco set_map_union_L set_map_singleton_L.
rewrite gset_to_coPset_union gset_to_coPset_singleton. auto.
+ by iFrame.
Qed.
(* Managed *)
Lemma managed_base_exclusive base_mgmtN base_ptrsN γtok γinfo γptrs γU γR p i i' size_i size_i' R R' :
ManagedBase base_mgmtN base_ptrsN γtok γinfo γptrs γU γR p i size_i R -∗
ManagedBase base_mgmtN base_ptrsN γtok γinfo γptrs γU γR p i' size_i' R' -∗
False.
Proof.
iIntros "M M'".
iDestruct "M" as (γc_i) "(cinv & i↪ & pc & Ex & CInv & U & γR)".
iDestruct "M'" as (γc_i') "(cinv' & i'↪ & pc' & Ex' & CInv' & U' & γR')".
iDestruct (coP_ghost_map_elem_agree with "pc' pc") as %->.
iDestruct (ghost_map_elem_agree with "i'↪ i↪") as %[= -> ->].
iDestruct (coP_cinv_own_valid with "cinv' cinv") as %DISJ.
iPureIntro. rewrite coPneset_disj_iff /= in DISJ.
set_solver.
Qed.
End lemmas.