diff --git a/docs/ch12/main.md b/docs/ch12/main.md
index 2bfd917..c7a41e1 100644
--- a/docs/ch12/main.md
+++ b/docs/ch12/main.md
@@ -1,12 +1,14 @@
-# PPO 算法
+# 第 12 章 PPO 算法
-$\qquad$ 本章我们开始讲解强化学习中最最最泛用的 $\text{PPO}$ 算法($\text{proximal policy optimization}$),这个算法在强化学习领域的研究和应用中有着非常重要的地位,可以说是强化学习领域的一个里程碑式的算法。$\text{PPO}$ 算法是一种基于策略梯度的强化学习算法,由 $\text{OpenAI}$ 的研究人员 $\text{Schulman}$ 等人在 $\text{2017}$ 年提出。$\text{PPO}$ 算法的主要思想是通过在策略梯度的优化过程中引入一个重要性比率来限制策略更新的幅度,从而提高算法的稳定性和收敛性。$\text{PPO}$ 算法的优点在于简单、易于实现、易于调参,而且在实际应用中的效果也非常好,因此在强化学习领域得到了广泛的应用。
+$\qquad$ 本章我们开始讲解强化学习中比较重要的 $\text{PPO}$ 算法,它在相关应用中有着非常重要的地位,是一个里程碑式的算法。不同于 $\text{DDPG}$ 算法,$\text{PPO}$ 算法是一类典型的 $\text{Actor-Critic}$ 算法,既适用于连续动作空间,也适用于离散动作空间。
+
+$\qquad$ $\text{PPO}$ 算法是一种基于策略梯度的强化学习算法,由 $\text{OpenAI}$ 的研究人员 $\text{Schulman}$ 等人在 $\text{2017}$ 年提出。$\text{PPO}$ 算法的主要思想是通过在策略梯度的优化过程中引入一个重要性权重来限制策略更新的幅度,从而提高算法的稳定性和收敛性。$\text{PPO}$ 算法的优点在于简单、易于实现、易于调参,应用十分广泛,正可谓 “遇事不决 $\text{PPO}$ ”。
$\qquad$ $\text{PPO}$ 的前身是 $\text{TRPO}$ 算法,旨在克服 $\text{TRPO}$ 算法中的一些计算上的困难和训练上的不稳定性。$\text{TRPO}$ 是一种基于策略梯度的算法,它通过定义策略更新的信赖域来保证每次更新的策略不会太远离当前的策略,以避免过大的更新引起性能下降。然而,$\text{TRPO}$ 算法需要解决一个复杂的约束优化问题,计算上较为繁琐。本书主要出于实践考虑,这种太复杂且几乎已经被淘汰的 $\text{TRPO}$ 算法就不再赘述了,需要深入研究或者工作面试的读者可以自行查阅相关资料。 接下来将详细讲解 $\text{PPO}$ 算法的原理和实现,希望能够帮助读者更好地理解和掌握这个算法。
-## 重要性采样
+## 12.1 重要性采样
-$\qquad$ 在将 $\text{PPO}$ 算法之前,我们需要铺垫一个概念,那就是重要性采样( $\text{importance sampling}$ )。重要性采样是一种估计随机变量的期望或者概率分布的统计方法。它的原理也很简单,假设有一个函数 $f(x)$ ,需要从分布 $p(x)$ 中采样来计算其期望值,但是在某些情况下我们可能很难从 $p(x)$ 中采样,这个时候我们可以从另一个比较容易采样的分布 $q(x)$ 中采样,来间接地达到从 $p(x)$ 中采样的效果。这个过程的数学表达式如式 $\text{(12.1)}$ 所示。
+$\qquad$ 在展开 $\text{PPO}$ 算法之前,我们先铺垫一个概念,即重要性采样( $\text{importance sampling}$ )。重要性采样是一种估计随机变量的期望或者概率分布的统计方法。它的原理也很简单,假设有一个函数 $f(x)$ ,需要从分布 $p(x)$ 中采样来计算其期望值,但是在某些情况下我们可能很难从 $p(x)$ 中采样,这个时候我们可以从另一个比较容易采样的分布 $q(x)$ 中采样,来间接地达到从 $p(x)$ 中采样的效果。这个过程的数学表达式如式 $\text{(12.1)}$ 所示。
$$
\tag{12.1}
@@ -17,7 +19,9 @@ $\qquad$ 对于离散分布的情况,可以表达为式 $\text{(12.2)}$ 。
$$
\tag{12.2}
+\begin{aligned}
E_{p(x)}[f(x)]=\frac{1}{N} \sum f\left(x_{i}\right) \frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}
+\end{aligned}
$$
$\qquad$ 这样一来原问题就变成了只需要从 $q(x)$ 中采样,然后计算两个分布之间的比例 $\frac{p(x)}{q(x)}$ 即可,这个比例称之为**重要性权重**。换句话说,每次从 $q(x)$ 中采样的时候,都需要乘上对应的重要性权重来修正采样的偏差,即两个分布之间的差异。当然这里可能会有一个问题,就是当 $p(x)$ 不为 $\text{0}$ 的时候,$q(x)$ 也不能为 $\text{0}$,但是他们可以同时为 $\text{0}$ ,这样 $\frac{p(x)}{q(x)}$ 依然有定义,具体的原理由于并不是很重要,因此就不展开讲解了。
@@ -33,15 +37,17 @@ $\qquad$ 结合重要性采样公式,我们可以得到式 $\text{(12.4)}$ 。
$$
\tag{12.4}
+\begin{aligned}
Var_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]=E_{x \sim q}\left[\left(f(x) \frac{p(x)}{q(x)}\right)^{2}\right]-\left(E_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]\right)^{2} \\
-=E_{x \sim p}\left[f(x)^{2} \frac{p(x)}{q(x)}\right]-\left(E_{x \sim p}[f(x)]\right)^{2}
+= E_{x \sim p}\left[f(x)^{2} \frac{p(x)}{q(x)}\right]-\left(E_{x \sim p}[f(x)]\right)^{2}
+\end{aligned}
$$
$\qquad$ 不难看出,当 $q(x)$ 越接近 $p(x)$ 的时候,方差就越小,也就是说重要性权重越接近于 $1$ 的时候,反之越大。
$\qquad$ 其实重要性采样也是蒙特卡洛估计的一部分,只不过它是一种比较特殊的蒙特卡洛估计,允许我们在复杂问题中利用已知的简单分布进行采样,从而避免了直接采样困难分布的问题,同时通过适当的权重调整,可以使得蒙特卡洛估计更接近真实结果。
-## PPO 算法
+## 12.2 PPO 算法
$\qquad$ 既然重要性采样本质上是一种在某些情况下更优的蒙特卡洛估计,再结合前面 $\text{Actor-Critic}$ 章节中我们讲到策略梯度算法的高方差主要来源于 $\text{Actor}$ 的策略梯度采样估计,读者应该不难猜出 $\text{PPO}$ 算法具体是优化在什么地方了。没错,$\text{PPO}$ 算法的核心思想就是通过重要性采样来优化原来的策略梯度估计,其目标函数表示如式 $\text{(12.5)}$ 所示。
@@ -80,10 +86,79 @@ $$
J^{KL}(\theta)=\hat{\mathbb{E}}_t\left[\frac{\pi_\theta\left(a_t \mid s_t\right)}{\pi_{\theta_{\text {old }}}\left(a_t \mid s_t\right)} \hat{A}_t-\beta \mathrm{KL}\left[\pi_{\theta_{\text {old }}}\left(\cdot \mid s_t\right), \pi_\theta\left(\cdot \mid s_t\right)\right]\right]
$$
-$\text{KL}$ 约束一般也叫 $\text{KL-penalty}$,它的意思是在 $\text{TRPO}$ 损失的基础上,加上一个 $\text{KL}$ 散度的惩罚项,这个惩罚项的系数 $\beta$ 一般取 $0.01$ 左右。这个惩罚项的作用也是保证每次更新的策略分布都不会偏离上一次的策略分布太远,从而保证重要性权重不会偏离 $1$ 太远。在实践中,我们一般用 $\text{clip}$ 约束,因为它更简单,计算成本较低,而且效果也更好。
-
-## 一个常见的误区
-
-在很早的章节之前,我们讲过 `on-policy` 和
-
-## 实战:PPO 算法
\ No newline at end of file
+$\qquad$ $\text{KL}$ 约束一般也叫 $\text{KL-penalty}$,它的意思是在 $\text{TRPO}$ 损失的基础上,加上一个 $\text{KL}$ 散度的惩罚项,这个惩罚项的系数 $\beta$ 一般取 $0.01$ 左右。这个惩罚项的作用也是保证每次更新的策略分布都不会偏离上一次的策略分布太远,从而保证重要性权重不会偏离 $1$ 太远。在实践中,我们一般用 $\text{clip}$ 约束,因为它更简单,计算成本较低,而且效果也更好。
+
+## 12.3 一个常见的误区
+
+$\qquad$ 在之前的章节中,我们讲过 $\text{on-policy}$ 和 $\text{off-policy}$ 算法,前者使用当前策略生成样本,并基于这些样本来更新该策略,后者则可以使用过去的策略采集样本来更新当前的策略。$\text{on-policy}$ 算法的数据利用效率较低,因为每次策略更新后,旧的样本或经验可能就不再适用,通常需要重新采样。而 $\text{off-policy}$ 算法由于可以利用历史经验,一般使用经验回放来存储和重复利用之前的经验,数据利用效率则较高,因为同一批数据可以被用于多次更新。但由于经验的再利用,可能会引入一定的偏见,但这也有助于稳定学习。但在需要即时学习和适应的环境中,$\text{on-policy}$ 算法可能更为适合,因为它们直接在当前策略下操作。
+
+$\qquad$ 那么 $\text{PPO}$ 算法究竟是 $\text{on-policy}$ 还是 $\text{off-policy}$ 的呢?有读者可能会因为 $\text{PPO}$ 算法在更新时重要性采样的部分中利用了旧的 $\text{Actor}$ 采样的样本,就觉得 $\text{PPO}$ 算法会是 $\text{off-policy}$ 的。实际上虽然这批样本是从旧的策略中采样得到的,但我们并没有直接使用这些样本去更新我们的策略,而是使用重要性采样先将数据分布不同导致的误差进行了修正,即是两者样本分布之间的差异尽可能地缩小。换句话说,就可以理解为重要性采样之后的样本虽然是由旧策略采样得到的,但可以近似为从更新后的策略中得到的,即我们要优化的 $\text{Actor}$ 和采样的 $\text{Actor}$ 是同一个,因此 **$\text{PPO}$ 算法是 $\text{on-policy}$ 的**。
+
+## 12.4 实战:PPO 算法
+### 12.4.1 PPO 伪代码
+
+$\qquad$ 如图 $\text{12-1}$ 所示,与 $\text{off-policy}$ 算法不同,$\text{PPO}$ 算法每次会采样若干个时步的样本,然后利用这些样本更新策略,而不是存入经验回放中进行采样更新。
+
+
+
+
+图 $\text{12-1}$ $\text{PPO}$ 算法伪代码
+
+### 12.4.2 PPO 算法更新
+
+$\qquad$ 无论是连续动作空间还是离散动作空间,$\text{PPO}$ 算法的动作采样方式跟前面章节讲的 $\text{Actor-Critic}$ 算法是一样的,在本次实战中就不做展开,读者可在 $\text{JoyRL}$ 代码仓库上查看完整代码。我们主要看看更新策略的方式,如代码清单 $\text{12-1}$ 所示。
+
+
+ 代码清单 $\text{12-1}$ $\text{PPO}$ 算法更新
+
+
+```Python
+def update(self):
+ # 采样样本
+ old_states, old_actions, old_log_probs, old_rewards, old_dones = self.memory.sample()
+ # 转换成tensor
+ old_states = torch.tensor(np.array(old_states), device=self.device, dtype=torch.float32)
+ old_actions = torch.tensor(np.array(old_actions), device=self.device, dtype=torch.float32)
+ old_log_probs = torch.tensor(old_log_probs, device=self.device, dtype=torch.float32)
+ # 计算回报
+ returns = []
+ discounted_sum = 0
+ for reward, done in zip(reversed(old_rewards), reversed(old_dones)):
+ if done:
+ discounted_sum = 0
+ discounted_sum = reward + (self.gamma * discounted_sum)
+ returns.insert(0, discounted_sum)
+ # 归一化
+ returns = torch.tensor(returns, device=self.device, dtype=torch.float32)
+ returns = (returns - returns.mean()) / (returns.std() + 1e-5) # 1e-5 to avoid division by zero
+ for _ in range(self.k_epochs): # 小批量随机下降
+ # 计算优势
+ values = self.critic(old_states)
+ advantage = returns - values.detach()
+ probs = self.actor(old_states)
+ dist = Categorical(probs)
+ new_probs = dist.log_prob(old_actions)
+ # 计算重要性权重
+ ratio = torch.exp(new_probs - old_log_probs) #
+ surr1 = ratio * advantage
+ surr2 = torch.clamp(ratio, 1 - self.eps_clip, 1 + self.eps_clip) * advantage
+ # 注意dist.entropy().mean()的目的是最大化策略熵
+ actor_loss = -torch.min(surr1, surr2).mean() + self.entropy_coef * dist.entropy().mean()
+ critic_loss = (returns - values).pow(2).mean()
+ # 反向传播
+ self.actor_optimizer.zero_grad()
+ self.critic_optimizer.zero_grad()
+ actor_loss.backward()
+ critic_loss.backward()
+ self.actor_optimizer.step()
+ self.critic_optimizer.step()
+```
+
+$\qquad$ 注意在更新时由于每次采样的轨迹往往包含的样本数较多,我们通过利用小批量随机下降将样本随机切分成若干个部分,然后一个批量一个批量地更新网络参数。最后我们展示算法在 $\text{CartPole}$ 上的训练效果,如图 $\text{12-2}$ 所示。此外,在更新 $\text{Actor}$ 参数时,我们增加了一个最大化策略熵的正则项,这部分原理我们会在接下来的一章讲到。
+
+
+
+
+图 $\text{12-2}$ $\text{CartPole}$ 环境 $\text{PPO}$ 算法训练曲线
+
+$\qquad$ 可以看到,与 $\text{A2C}$ 算法相比,$\text{PPO}$ 算法的收敛是要更加快速且稳定的。
\ No newline at end of file
diff --git a/docs/ch13/main.md b/docs/ch13/main.md
index 2b64b97..02345e6 100644
--- a/docs/ch13/main.md
+++ b/docs/ch13/main.md
@@ -1,8 +1,8 @@
-# SAC 算法
+# 第 13 章 SAC 算法
-$\qquad$ 本章开始介绍最后一种经典的策略梯度算法,即 $\text{Soft Actor-Critic}$ 算法,简写为 $\text{SAC}$ 。$\text{SAC}$ 算法是一种基于最大熵强化学习的策略梯度算法,它的目标是最大化策略的熵,从而使得策略更加鲁棒。$\text{SAC}$ 算法的核心思想是,通过最大化策略的熵,使得策略更加鲁棒,经过超参改良后的 $\text{SAC}$ 算法在稳定性方面是可以与 $\text{PPO}$ 算法华山论剑的。注意,由于 $\text{SAC}$ 算法理论相对之前的算法要复杂一些,因此推导过程要多很多,但是最后的结果还是相对简洁的,因此读者可以根据自己的需求选择性阅读,只需要关注伪代码中变量的涵义以及结果公式即可。
+$\qquad$ 本章开始介绍最后一种经典的策略梯度算法,即 $\text{Soft Actor-Critic}$ 算法,简写为 $\text{SAC}$ 。相比于前两个算法,$\text{SAC}$ 算法要更为复杂,因此本章涉及的公式推导也要多很多,但是最后的结果还是相对简洁的。因此读者可以根据自己的需求选择性阅读,只需要关注伪代码中变量的涵义以及结果公式即可。$\text{SAC}$ 算法是一种基于最大熵强化学习的策略梯度算法,它的目标是最大化策略的熵,从而使得策略更加鲁棒。$\text{SAC}$ 算法的核心思想是,通过最大化策略的熵,使得策略更加鲁棒,经过超参改良后的 $\text{SAC}$ 算法在稳定性方面是可以与 $\text{PPO}$ 算法华山论剑的。注意,由于 $\text{SAC}$ 算法理论相对之前的算法要复杂一些,因此推导过程
-## 最大熵强化学习
+## 13.1 最大熵强化学习
$\qquad$ 由于 $\text{SAC}$ 算法相比于之前的策略梯度算法独具一路,它走的是最大熵强化学习的路子。为了让读者更好地搞懂什么是 $\text{SAC}$ ,我们先介绍一下最大熵强化学习,然后从基于价值的 $\text{Soft Q-Learning}$ 算法开始讲起。我们先回忆一下确定性策略和随机性策略,确定性策略是指在给定相同状态下,总是选择相同的动作,随机性策略则是在给定状态下可以选择多种可能的动作,不知道读者们有没有想过这两种策略在实践中有什么优劣呢?或者说哪种更好呢?这里我们先架空实际的应用场景,只总结这两种策略本身的优劣,首先看确定性策略:
@@ -43,7 +43,7 @@ $$
$\qquad$ 它表示了随机策略 $\pi\left(\cdot \mid \mathbf{s}_t\right)$ 对应概率分布的随机程度,策略越随机,熵越大。后面我们可以发现,虽然理论推导起来比较复杂,但实际实践起来是比较简单的。
-## Soft Q-Learning
+## 13.2 Soft Q-Learning
$\qquad$ 前面小节中我们引入了带有熵的累积奖励期望,接下来我们需要基于这个重新定义的奖励来重新推导一下相关的量。后面我们会发现虽然推导起来比较复杂,但用代码实现起来是比较简单的,因为几乎跟传统的 $\text{Q-Learning}$ 算法没有多大区别。因此着重于实际应用的同学可以直接跳过本小节的推导部分,直接看后面的算法实战部分。
@@ -152,7 +152,7 @@ $$
\end{aligned}
$$
-## SAC
+## 13.3 SAC
$\qquad$ 实际上 $\text{SAC}$ 算法有两个版本,第一个版本是由 $\text{Tuomas Haarnoja}$ 于 $\text{2018}$ 年提出来的①,,第二个版本也是由 $\text{Tuomas Haarnoja}$ 于 $\text{2019}$ 年提出来的②,一般称作 $\text{SAC v2}$。第二个版本主要在前一版本的基础上做了简化,并且实现了温度因子的自动调节,从而使得算法更加简单稳定。
@@ -205,7 +205,7 @@ $$
\end{aligned}
$$
-## 自动调节温度因子
+## 13.4 自动调节温度因子
$\qquad$ 本小节主要讲解如何推导出自动调节因子的版本,整体推导的思路其实很简单,就是转换成规划问题,然后用动态规划、拉格朗日乘子法等方法简化求解,只关注结果的读者可以直接跳到本小节最后一个关于温度调节因子 $\alpha$ 的梯度下降公式即可。
@@ -361,4 +361,122 @@ $$
$\qquad$ 这样一来就能实现温度因子的自动调节了。这一版本由于引入了温度因子的自动调节,因此不需要额外的 $V$ 值网络,直接使用两个 $Q$ 网络(包含目标网络和当前网络)来作为 $\text{Critic}$ 估计价值即可。
-## 实战:SAC 算法
\ No newline at end of file
+## 13.5 实战:SAC 算法
+
+$\qquad$ 在实战中,我们主要讲解 $SAC$ 算法的第二个版本,即自动调节温度因子的版本。该版本的如图 $\text{13-1}$ 所示,整个训练过程相对来说还是比较简洁的,只是需要额外定义一些网络,比如用来调节温度因子等。
+
+
+
+
+图 $\text{13-1}$ $\text{SAC}$ 算法伪代码
+
+### 15.5.1 定义模型
+
+$\qquad$ 首先我们定义 $\text{Actor}$ 和 $\text{Critic}$,即值网络和策略网络,跟 $\text{A2C}$ 算法其实是一样的,如代码清单 $\text{13-1}$ 所示。
+
+
+ 代码清单 $\text{13-1}$ $\text{Actor}$ 和 $\text{Critic}$ 网络
+
+
+```Python
+class ValueNet(nn.Module):
+ def __init__(self, state_dim, hidden_dim, init_w=3e-3):
+ super(ValueNet, self).__init__()
+ '''定义值网络
+ '''
+ self.linear1 = nn.Linear(state_dim, hidden_dim) # 输入层
+ self.linear2 = nn.Linear(hidden_dim, hidden_dim) # 隐藏层
+ self.linear3 = nn.Linear(hidden_dim, 1)
+
+ self.linear3.weight.data.uniform_(-init_w, init_w) # 初始化权重
+ self.linear3.bias.data.uniform_(-init_w, init_w)
+
+ def forward(self, state):
+ x = F.relu(self.linear1(state))
+ x = F.relu(self.linear2(x))
+ x = self.linear3(x)
+ return x
+class PolicyNet(nn.Module):
+ def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3, log_std_min=-20, log_std_max=2):
+ super(PolicyNet, self).__init__()
+ self.log_std_min = log_std_min
+ self.log_std_max = log_std_max
+
+ self.linear1 = nn.Linear(state_dim, hidden_dim)
+ self.linear2 = nn.Linear(hidden_dim, hidden_dim)
+
+ # 初始化权重
+ self.mean_linear = nn.Linear(hidden_dim, action_dim)
+ self.mean_linear.weight.data.uniform_(-init_w, init_w)
+ self.mean_linear.bias.data.uniform_(-init_w, init_w)
+
+ self.log_std_linear = nn.Linear(hidden_dim, action_dim)
+ self.log_std_linear.weight.data.uniform_(-init_w, init_w)
+ self.log_std_linear.bias.data.uniform_(-init_w, init_w)
+
+ def forward(self, state):
+ x = F.relu(self.linear1(state))
+ x = F.relu(self.linear2(x))
+
+ mean = self.mean_linear(x)
+ log_std = self.log_std_linear(x)
+ log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max)
+
+ return mean, log_std
+
+ def evaluate(self, state, epsilon=1e-6):
+ mean, log_std = self.forward(state)
+ std = log_std.exp()
+ # 计算动作
+ normal = Normal(mean, std)
+ z = normal.sample()
+ action = torch.tanh(z)
+ # 计算动作概率
+ log_prob = normal.log_prob(z) - torch.log(1 - action.pow(2) + epsilon)
+ log_prob = log_prob.sum(-1, keepdim=True)
+
+ return action, log_prob, z, mean, log_std
+
+ def get_action(self, state):
+ state = torch.FloatTensor(state).unsqueeze(0)
+ mean, log_std = self.forward(state)
+ std = log_std.exp()
+
+ normal = Normal(mean, std)
+ z = normal.sample()
+ action = torch.tanh(z)
+
+ action = action.detach().cpu().numpy()
+ return action[0]
+```
+
+$\qquad$ 然后再额外定义一个 $\text{Soft Q}$ 网络,如代码清单 $\text{13-2}$ 所示。
+
+
+ 代码清单 $\text{13-2}$ $\text{Soft Q}$ 网络
+
+
+```Python
+class SoftQNet(nn.Module):
+ def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3):
+ super(SoftQNet, self).__init__()
+ '''定义Q网络,state_dim, action_dim, hidden_dim, init_w分别为状态维度、动作维度隐藏层维度和初始化权重
+ '''
+ self.linear1 = nn.Linear(state_dim + action_dim, hidden_dim)
+ self.linear2 = nn.Linear(hidden_dim, hidden_dim)
+ self.linear3 = nn.Linear(hidden_dim, 1)
+
+ self.linear3.weight.data.uniform_(-init_w, init_w)
+ self.linear3.bias.data.uniform_(-init_w, init_w)
+
+ def forward(self, state, action):
+ x = torch.cat([state, action], 1)
+ x = F.relu(self.linear1(x))
+ x = F.relu(self.linear2(x))
+ x = self.linear3(x)
+ return x
+```
+
+### 15.5.2 算法更新
+
+$\qquad$ 我们再看看
\ No newline at end of file
diff --git a/docs/figs/ch12/PPO_Cartpole_training_curve.png b/docs/figs/ch12/PPO_Cartpole_training_curve.png
new file mode 100644
index 0000000..d4b4bf8
Binary files /dev/null and b/docs/figs/ch12/PPO_Cartpole_training_curve.png differ
diff --git a/docs/figs/ch12/ppo_pseu.png b/docs/figs/ch12/ppo_pseu.png
new file mode 100644
index 0000000..c1bba91
Binary files /dev/null and b/docs/figs/ch12/ppo_pseu.png differ
diff --git a/docs/figs/ch13/sac_pseu.png b/docs/figs/ch13/sac_pseu.png
new file mode 100644
index 0000000..67f2f91
Binary files /dev/null and b/docs/figs/ch13/sac_pseu.png differ
diff --git a/notebooks/PPO.ipynb b/notebooks/PPO.ipynb
new file mode 100644
index 0000000..94cadae
--- /dev/null
+++ b/notebooks/PPO.ipynb
@@ -0,0 +1,522 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# PPO实现CarPole-v1(离散动作空间)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 1. 定义算法"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 1.1 定义模型"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch.nn as nn\n",
+ "import torch.nn.functional as F\n",
+ "class ActorSoftmax(nn.Module):\n",
+ " def __init__(self, input_dim, output_dim, hidden_dim=256):\n",
+ " super(ActorSoftmax, self).__init__()\n",
+ " self.fc1 = nn.Linear(input_dim, hidden_dim)\n",
+ " self.fc2 = nn.Linear(hidden_dim, hidden_dim)\n",
+ " self.fc3 = nn.Linear(hidden_dim, output_dim)\n",
+ " def forward(self,x):\n",
+ " x = F.relu(self.fc1(x))\n",
+ " x = F.relu(self.fc2(x))\n",
+ " probs = F.softmax(self.fc3(x),dim=1)\n",
+ " return probs\n",
+ "class Critic(nn.Module):\n",
+ " def __init__(self,input_dim,output_dim,hidden_dim=256):\n",
+ " super(Critic,self).__init__()\n",
+ " assert output_dim == 1 # critic must output a single value\n",
+ " self.fc1 = nn.Linear(input_dim, hidden_dim)\n",
+ " self.fc2 = nn.Linear(hidden_dim, hidden_dim)\n",
+ " self.fc3 = nn.Linear(hidden_dim, output_dim)\n",
+ " def forward(self,x):\n",
+ " x = F.relu(self.fc1(x))\n",
+ " x = F.relu(self.fc2(x))\n",
+ " value = self.fc3(x)\n",
+ " return value"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 1.2 定义经验回放"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import random\n",
+ "from collections import deque\n",
+ "class ReplayBufferQue:\n",
+ " '''DQN的经验回放池,每次采样batch_size个样本'''\n",
+ " def __init__(self, capacity: int) -> None:\n",
+ " self.capacity = capacity\n",
+ " self.buffer = deque(maxlen=self.capacity)\n",
+ " def push(self,transitions):\n",
+ " '''_summary_\n",
+ " Args:\n",
+ " trainsitions (tuple): _description_\n",
+ " '''\n",
+ " self.buffer.append(transitions)\n",
+ " def sample(self, batch_size: int, sequential: bool = False):\n",
+ " if batch_size > len(self.buffer):\n",
+ " batch_size = len(self.buffer)\n",
+ " if sequential: # sequential sampling\n",
+ " rand = random.randint(0, len(self.buffer) - batch_size)\n",
+ " batch = [self.buffer[i] for i in range(rand, rand + batch_size)]\n",
+ " return zip(*batch)\n",
+ " else:\n",
+ " batch = random.sample(self.buffer, batch_size)\n",
+ " return zip(*batch)\n",
+ " def clear(self):\n",
+ " self.buffer.clear()\n",
+ " def __len__(self):\n",
+ " return len(self.buffer)\n",
+ "\n",
+ "class PGReplay(ReplayBufferQue):\n",
+ " '''PG的经验回放池,每次采样所有样本,因此只需要继承ReplayBufferQue,重写sample方法即可\n",
+ " '''\n",
+ " def __init__(self):\n",
+ " self.buffer = deque()\n",
+ " def sample(self):\n",
+ " ''' sample all the transitions\n",
+ " '''\n",
+ " batch = list(self.buffer)\n",
+ " return zip(*batch)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 1.3 定义智能体"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "from torch.distributions import Categorical\n",
+ "class Agent:\n",
+ " def __init__(self,cfg) -> None:\n",
+ " \n",
+ " self.gamma = cfg.gamma\n",
+ " self.device = torch.device(cfg.device) \n",
+ " self.actor = ActorSoftmax(cfg.n_states,cfg.n_actions, hidden_dim = cfg.actor_hidden_dim).to(self.device)\n",
+ " self.critic = Critic(cfg.n_states,1,hidden_dim=cfg.critic_hidden_dim).to(self.device)\n",
+ " self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=cfg.actor_lr)\n",
+ " self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=cfg.critic_lr)\n",
+ " self.memory = PGReplay()\n",
+ " self.k_epochs = cfg.k_epochs # update policy for K epochs\n",
+ " self.eps_clip = cfg.eps_clip # clip parameter for PPO\n",
+ " self.entropy_coef = cfg.entropy_coef # entropy coefficient\n",
+ " self.sample_count = 0\n",
+ " self.update_freq = cfg.update_freq\n",
+ "\n",
+ " def sample_action(self,state):\n",
+ " self.sample_count += 1\n",
+ " state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)\n",
+ " probs = self.actor(state)\n",
+ " dist = Categorical(probs)\n",
+ " action = dist.sample()\n",
+ " self.log_probs = dist.log_prob(action).detach()\n",
+ " return action.detach().cpu().numpy().item()\n",
+ " @torch.no_grad()\n",
+ " def predict_action(self,state):\n",
+ " state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)\n",
+ " probs = self.actor(state)\n",
+ " dist = Categorical(probs)\n",
+ " action = dist.sample()\n",
+ " return action.detach().cpu().numpy().item()\n",
+ " def update(self):\n",
+ " # update policy every n steps\n",
+ " if self.sample_count % self.update_freq != 0:\n",
+ " return\n",
+ " # print(\"update policy\")\n",
+ " old_states, old_actions, old_log_probs, old_rewards, old_dones = self.memory.sample()\n",
+ " # convert to tensor\n",
+ " old_states = torch.tensor(np.array(old_states), device=self.device, dtype=torch.float32)\n",
+ " old_actions = torch.tensor(np.array(old_actions), device=self.device, dtype=torch.float32)\n",
+ " old_log_probs = torch.tensor(old_log_probs, device=self.device, dtype=torch.float32)\n",
+ " # monte carlo estimate of state rewards\n",
+ " returns = []\n",
+ " discounted_sum = 0\n",
+ " for reward, done in zip(reversed(old_rewards), reversed(old_dones)):\n",
+ " if done:\n",
+ " discounted_sum = 0\n",
+ " discounted_sum = reward + (self.gamma * discounted_sum)\n",
+ " returns.insert(0, discounted_sum)\n",
+ " # Normalizing the rewards:\n",
+ " returns = torch.tensor(returns, device=self.device, dtype=torch.float32)\n",
+ " returns = (returns - returns.mean()) / (returns.std() + 1e-5) # 1e-5 to avoid division by zero\n",
+ " for _ in range(self.k_epochs):\n",
+ " # compute advantage\n",
+ " values = self.critic(old_states) # detach to avoid backprop through the critic\n",
+ " advantage = returns - values.detach()\n",
+ " # get action probabilities\n",
+ " probs = self.actor(old_states)\n",
+ " dist = Categorical(probs)\n",
+ " # get new action probabilities\n",
+ " new_probs = dist.log_prob(old_actions)\n",
+ " # compute ratio (pi_theta / pi_theta__old):\n",
+ " ratio = torch.exp(new_probs - old_log_probs) # old_log_probs must be detached\n",
+ " # compute surrogate loss\n",
+ " surr1 = ratio * advantage\n",
+ " surr2 = torch.clamp(ratio, 1 - self.eps_clip, 1 + self.eps_clip) * advantage\n",
+ " # compute actor loss\n",
+ " actor_loss = -torch.min(surr1, surr2).mean() + self.entropy_coef * dist.entropy().mean()\n",
+ " # compute critic loss\n",
+ " critic_loss = (returns - values).pow(2).mean()\n",
+ " # take gradient step\n",
+ " self.actor_optimizer.zero_grad()\n",
+ " self.critic_optimizer.zero_grad()\n",
+ " actor_loss.backward()\n",
+ " critic_loss.backward()\n",
+ " self.actor_optimizer.step()\n",
+ " self.critic_optimizer.step()\n",
+ " self.memory.clear()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 2. 定义训练"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import copy\n",
+ "def train(cfg, env, agent):\n",
+ " ''' 训练\n",
+ " '''\n",
+ " print(\"开始训练!\")\n",
+ " rewards = [] # 记录所有回合的奖励\n",
+ " steps = []\n",
+ " best_ep_reward = 0 # 记录最大回合奖励\n",
+ " output_agent = None\n",
+ " for i_ep in range(cfg.train_eps):\n",
+ " ep_reward = 0 # 记录一回合内的奖励\n",
+ " ep_step = 0\n",
+ " state = env.reset() # 重置环境,返回初始状态\n",
+ " for _ in range(cfg.max_steps):\n",
+ " ep_step += 1\n",
+ " action = agent.sample_action(state) # 选择动作\n",
+ " next_state, reward, done, _ = env.step(action) # 更新环境,返回transition\n",
+ " agent.memory.push((state, action,agent.log_probs,reward,done)) # 保存transition\n",
+ " state = next_state # 更新下一个状态\n",
+ " agent.update() # 更新智能体\n",
+ " ep_reward += reward # 累加奖励\n",
+ " if done:\n",
+ " break\n",
+ " if (i_ep+1)%cfg.eval_per_episode == 0:\n",
+ " sum_eval_reward = 0\n",
+ " for _ in range(cfg.eval_eps):\n",
+ " eval_ep_reward = 0\n",
+ " state = env.reset()\n",
+ " for _ in range(cfg.max_steps):\n",
+ " action = agent.predict_action(state) # 选择动作\n",
+ " next_state, reward, done, _ = env.step(action) # 更新环境,返回transition\n",
+ " state = next_state # 更新下一个状态\n",
+ " eval_ep_reward += reward # 累加奖励\n",
+ " if done:\n",
+ " break\n",
+ " sum_eval_reward += eval_ep_reward\n",
+ " mean_eval_reward = sum_eval_reward/cfg.eval_eps\n",
+ " if mean_eval_reward >= best_ep_reward:\n",
+ " best_ep_reward = mean_eval_reward\n",
+ " output_agent = copy.deepcopy(agent)\n",
+ " print(f\"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f},评估奖励:{mean_eval_reward:.2f},最佳评估奖励:{best_ep_reward:.2f},更新模型!\")\n",
+ " else:\n",
+ " print(f\"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f},评估奖励:{mean_eval_reward:.2f},最佳评估奖励:{best_ep_reward:.2f}\")\n",
+ " steps.append(ep_step)\n",
+ " rewards.append(ep_reward)\n",
+ " print(\"完成训练!\")\n",
+ " env.close()\n",
+ " return output_agent,{'rewards':rewards}\n",
+ "\n",
+ "def test(cfg, env, agent):\n",
+ " print(\"开始测试!\")\n",
+ " rewards = [] # 记录所有回合的奖励\n",
+ " steps = []\n",
+ " for i_ep in range(cfg.test_eps):\n",
+ " ep_reward = 0 # 记录一回合内的奖励\n",
+ " ep_step = 0\n",
+ " state = env.reset() # 重置环境,返回初始状态\n",
+ " for _ in range(cfg.max_steps):\n",
+ " ep_step+=1\n",
+ " action = agent.predict_action(state) # 选择动作\n",
+ " next_state, reward, done, _ = env.step(action) # 更新环境,返回transition\n",
+ " state = next_state # 更新下一个状态\n",
+ " ep_reward += reward # 累加奖励\n",
+ " if done:\n",
+ " break\n",
+ " steps.append(ep_step)\n",
+ " rewards.append(ep_reward)\n",
+ " print(f\"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.2f}\")\n",
+ " print(\"完成测试\")\n",
+ " env.close()\n",
+ " return {'rewards':rewards}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 3. 定义环境"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import gym\n",
+ "import os\n",
+ "import numpy as np\n",
+ "def all_seed(env,seed = 1):\n",
+ " ''' 万能的seed函数\n",
+ " '''\n",
+ " if seed == 0:\n",
+ " return\n",
+ " env.seed(seed) # env config\n",
+ " np.random.seed(seed)\n",
+ " random.seed(seed)\n",
+ " torch.manual_seed(seed) # config for CPU\n",
+ " torch.cuda.manual_seed(seed) # config for GPU\n",
+ " os.environ['PYTHONHASHSEED'] = str(seed) # config for python scripts\n",
+ " # config for cudnn\n",
+ " torch.backends.cudnn.deterministic = True\n",
+ " torch.backends.cudnn.benchmark = False\n",
+ " torch.backends.cudnn.enabled = False\n",
+ "def env_agent_config(cfg):\n",
+ " env = gym.make(cfg.env_name) # 创建环境\n",
+ " all_seed(env,seed=cfg.seed)\n",
+ " n_states = env.observation_space.shape[0]\n",
+ " n_actions = env.action_space.n\n",
+ " print(f\"状态空间维度:{n_states},动作空间维度:{n_actions}\")\n",
+ " # 更新n_states和n_actions到cfg参数中\n",
+ " setattr(cfg, 'n_states', n_states)\n",
+ " setattr(cfg, 'n_actions', n_actions) \n",
+ " agent = Agent(cfg)\n",
+ " return env,agent"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 4. 设置参数"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "class Config:\n",
+ " def __init__(self) -> None:\n",
+ " self.env_name = \"CartPole-v1\" # 环境名字\n",
+ " self.new_step_api = False # 是否用gym的新api\n",
+ " self.algo_name = \"PPO\" # 算法名字\n",
+ " self.mode = \"train\" # train or test\n",
+ " self.seed = 1 # 随机种子\n",
+ " self.device = \"cuda\" # device to use\n",
+ " self.train_eps = 200 # 训练的回合数\n",
+ " self.test_eps = 20 # 测试的回合数\n",
+ " self.max_steps = 200 # 每个回合的最大步数\n",
+ " self.eval_eps = 5 # 评估的回合数\n",
+ " self.eval_per_episode = 10 # 评估的频率\n",
+ "\n",
+ " self.gamma = 0.99 # 折扣因子\n",
+ " self.k_epochs = 4 # 更新策略网络的次数\n",
+ " self.actor_lr = 0.0003 # actor网络的学习率\n",
+ " self.critic_lr = 0.0003 # critic网络的学习率\n",
+ " self.eps_clip = 0.2 # epsilon-clip\n",
+ " self.entropy_coef = 0.01 # entropy的系数\n",
+ " self.update_freq = 100 # 更新频率\n",
+ " self.actor_hidden_dim = 256 # actor网络的隐藏层维度\n",
+ " self.critic_hidden_dim = 256 # critic网络的隐藏层维度\n",
+ "\n",
+ "def smooth(data, weight=0.9): \n",
+ " '''用于平滑曲线,类似于Tensorboard中的smooth曲线\n",
+ " '''\n",
+ " last = data[0] \n",
+ " smoothed = []\n",
+ " for point in data:\n",
+ " smoothed_val = last * weight + (1 - weight) * point # 计算平滑值\n",
+ " smoothed.append(smoothed_val) \n",
+ " last = smoothed_val \n",
+ " return smoothed\n",
+ "\n",
+ "def plot_rewards(rewards,cfg, tag='train'):\n",
+ " ''' 画图\n",
+ " '''\n",
+ " sns.set()\n",
+ " plt.figure() # 创建一个图形实例,方便同时多画几个图\n",
+ " plt.title(f\"{tag}ing curve on {cfg.device} of {cfg.algo_name} for {cfg.env_name}\")\n",
+ " plt.xlabel('epsiodes')\n",
+ " plt.plot(rewards, label='rewards')\n",
+ " plt.plot(smooth(rewards), label='smoothed')\n",
+ " plt.legend()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 5. 开始训练"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "状态空间维度:4,动作空间维度:2\n",
+ "开始训练!\n",
+ "回合:10/200,奖励:11.00,评估奖励:29.20,最佳评估奖励:29.20,更新模型!\n",
+ "回合:20/200,奖励:68.00,评估奖励:25.00,最佳评估奖励:29.20\n",
+ "回合:30/200,奖励:60.00,评估奖励:26.20,最佳评估奖励:29.20\n",
+ "回合:40/200,奖励:105.00,评估奖励:27.60,最佳评估奖励:29.20\n",
+ "回合:50/200,奖励:26.00,评估奖励:60.60,最佳评估奖励:60.60,更新模型!\n",
+ "回合:60/200,奖励:122.00,评估奖励:113.40,最佳评估奖励:113.40,更新模型!\n",
+ "回合:70/200,奖励:65.00,评估奖励:38.00,最佳评估奖励:113.40\n",
+ "回合:80/200,奖励:175.00,评估奖励:135.40,最佳评估奖励:135.40,更新模型!\n",
+ "回合:90/200,奖励:200.00,评估奖励:177.20,最佳评估奖励:177.20,更新模型!\n",
+ "回合:100/200,奖励:115.00,评估奖励:173.60,最佳评估奖励:177.20\n",
+ "回合:110/200,奖励:200.00,评估奖励:183.20,最佳评估奖励:183.20,更新模型!\n",
+ "回合:120/200,奖励:196.00,评估奖励:173.60,最佳评估奖励:183.20\n",
+ "回合:130/200,奖励:46.00,评估奖励:61.40,最佳评估奖励:183.20\n",
+ "回合:140/200,奖励:200.00,评估奖励:166.40,最佳评估奖励:183.20\n",
+ "回合:150/200,奖励:172.00,评估奖励:154.40,最佳评估奖励:183.20\n",
+ "回合:160/200,奖励:61.00,评估奖励:84.80,最佳评估奖励:183.20\n",
+ "回合:170/200,奖励:127.00,评估奖励:181.60,最佳评估奖励:183.20\n",
+ "回合:180/200,奖励:152.00,评估奖励:173.20,最佳评估奖励:183.20\n",
+ "回合:190/200,奖励:200.00,评估奖励:200.00,最佳评估奖励:200.00,更新模型!\n",
+ "回合:200/200,奖励:176.00,评估奖励:190.20,最佳评估奖励:200.00\n",
+ "完成训练!\n",
+ "开始测试!\n",
+ "回合:1/20,奖励:200.00\n",
+ "回合:2/20,奖励:200.00\n",
+ "回合:3/20,奖励:200.00\n",
+ "回合:4/20,奖励:200.00\n",
+ "回合:5/20,奖励:200.00\n",
+ "回合:6/20,奖励:200.00\n",
+ "回合:7/20,奖励:200.00\n",
+ "回合:8/20,奖励:200.00\n",
+ "回合:9/20,奖励:200.00\n",
+ "回合:10/20,奖励:200.00\n",
+ "回合:11/20,奖励:200.00\n",
+ "回合:12/20,奖励:200.00\n",
+ "回合:13/20,奖励:200.00\n",
+ "回合:14/20,奖励:200.00\n",
+ "回合:15/20,奖励:200.00\n",
+ "回合:16/20,奖励:200.00\n",
+ "回合:17/20,奖励:200.00\n",
+ "回合:18/20,奖励:200.00\n",
+ "回合:19/20,奖励:200.00\n",
+ "回合:20/20,奖励:200.00\n",
+ "完成测试\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHJCAYAAACrCBICAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOxdd5jc1PU9KtO2V++6994rNjZgjDG9BPglJHRMrwFCJxB6DcVUk9BrCJhqWigxJWBjY8AF995219vLNJXfH9KTnjTSjGZ2Zne86HyfP+/MqLz39KR3de659zKyLMtw4cKFCxcuXLjIQrCd3QAXLly4cOHChQs7uIaKCxcuXLhw4SJr4RoqLly4cOHChYushWuouHDhwoULFy6yFq6h4sKFCxcuXLjIWriGigsXLly4cOEia+EaKi5cuHDhwoWLrIVrqLhw4cKFCxcushauoeICbs4/Fy5cpBvuc8VFuuAaKr9xfP7557j22mvTcqwFCxZg6NCh2LFjR0b3cbFvYOjQoXj00Uc75Fxr167F8ccfj1GjRuHII4+03Oa6667D0KFDDf9GjhyJGTNm4Oqrr8bu3bu1bR999NGYbUeMGIH99tsPF198MdavXx9z/Lq6Otx33304/PDDMWbMGEybNg1nnHEGPvzww7T1IR1YsWIFrr76asycORNjxozB7Nmz8de//hXbt29P2zn+/e9/495779U+L168OGY8hw0bhgkTJuDkk0/GF198kdTxd+zYgaFDh2LBggVpa7NTvPTSS5g1a1aHn/e3DL6zG+Cic/H888+n7VgzZ87Ev/71L3Tr1i2j+7hwYcbjjz+OXbt24fHHH0dJSYntduXl5Xjssce0z4IgYPPmzXjggQewfPlyfPDBB/D7/drv//rXv7S/RVHErl278NBDD+GUU07BwoULUV5eDgBYs2YNzjnnHPA8j9NPPx0jR45Ec3MzPv/8c1x11VX45JNP8MADD8Dj8bS7D+3BK6+8grvuugv77bcfrrrqKnTr1g1bt27FM888g08//RQvvPAChg0b1u7zPPnkk5gyZUrM9zfffDNGjhwJQGFcGhsb8eyzz+Kiiy7C/PnzcdBBB7X73JnEwoULcc8996CioqKzm/KbgmuouEgbSkpKkn7AprKPCxdm1NfXY8iQIQkXOq/Xi3Hjxhm+mzRpEjweD6699lp8/vnnOOqoo7TfzNtOnDgR3bt3xymnnIK3334b5513HoLBIC666CKUl5fjhRdeQEFBgbb97NmzcfDBB+PSSy9F//798ec//7ndfUgVy5Ytw5133olTTjkFN954o/b9fvvth9mzZ+P444/HDTfckFGWYtCgQZbjP3PmTLz44otZa6jU1tbikUcewb/+9S8UFRV1dnN+c3BdP79hnHbaaViyZAmWLFmCoUOHYvHixRpF+/rrr+Pggw/GhAkT8O233wJQ6NwTTjgB48aNw5gxY3Dcccfho48+0o5nduNcd911OPPMM/HWW2/hsMMOw6hRo3Dcccfhq6++atc+ALB8+XKccsopGDduHGbOnIkXXngBZ555Jq677rq4ff7pp59w9tlnY8KECZg6dSquvPJKVFVVWbaFYNasWYbjDh06FI899hhOOOEEjBkzBo899hiGDx+Ol19+2bBfXV0dRo4cqbFWkiTh6aefxqGHHopRo0bhsMMOw0svvZTwOjU3N+Puu+/G7NmzMXr0aBx99NF48803Y9o4b9483Hvvvdh///0xZswYzJ07F1u2bIl77EgkgocffhiHHHIIxowZg6OPPhpvv/22bd/txmnJkiX4wx/+gLFjx+Kwww7D//73v5hz7dixA9dccw1mzJiBkSNHYtq0abjmmmtQX18ft43V1dW4/vrrcdBBB2HMmDE46aST8Pnnn2u/Dx06FEuWLMEPP/yQsjtg9OjRAICdO3cm3HbUqFGGbRcsWICdO3filltuMRgpBHPmzMGRRx6J559/Hq2trZbHtOvDli1bcNlll2H69OkYN24cTjvtNCxbtkzbj7hAnnvuORx++OEYO3Ys3nrrLctzPPPMM8jPz8eVV14Z81tJSQmuu+46HHLIIWhrawMAhEIh/P3vf8ecOXMwatQoTJgwAWeddRZ+/fVXbb/rrrsOZ5xxBm655RZMmDABRx55JA466CDs3LkTb7/9tiO3bl5eHvr3749du3Zp3yW65lbYtWsXrrzySkyZMgVjx47FGWecgdWrV8fd5/3338fQoUOxbt06w/efffYZhg4dqu3/1FNP4ZtvvsGjjz6Kgw8+OO4xXaQfrqHyG8Ytt9yCESNGYMSIEfjXv/6lUbIA8Nhjj+Haa6/FzTffjPHjx+OVV17BzTffjNmzZ2P+/Pl44IEH4PV68Ze//AV79uyxPcfKlSvxzDPP4LLLLsPjjz8OjuNw6aWXorGxMeV9Nm7ciDPPPBMA8OCDD+LSSy/F008/bXiAW2H16tU49dRTEQ6Hcd999+HWW2/FypUrMXfuXAiCkMTIKQ+uY445BvPmzcNhhx2GKVOmYOHChYZtPv74Y8iyrL2h/+1vf8O8efNw7LHH4qmnnsLhhx+Ou+66C48//rjteUKhEP70pz/h/fffxznnnIMnnngCEydOxI033oinnnrKsO2LL76ITZs24e6778Ydd9yBlStXJtQf/eUvf8Fzzz2H//u//8P8+fMxY8YMXHfddfjggw8cj8WqVatw9tlnIz8/H/PmzcPpp58esxgGg0Gcfvrp2LhxI2655RY888wzOP3007Fw4UI89NBDtsfeu3cvTjrpJCxduhRXXHEFHn30UfTs2RMXX3wx3nvvPQCKe4aexzNnznTcdoLNmzcDAPr06ZP0tl9//TVKSkpimAIaRx11FILBoKUBB1j3YcOGDTjhhBOwY8cO3HTTTXjggQfAMAzOOOMMLFmyxLD/o48+inPPPRf33Xcfpk+fHnN8WZbxzTffYNq0aQgEApZtOPLII3HxxRcjJycHAHDNNdfgrbfewnnnnYdnn30W119/PdavX4+rrrrKIJRdunQpdu/ejccffxxXXXUVnnzySZSXl+Oggw5y5NaNRCLYsWOHNp5OrrkZdXV1OPnkk7Fq1Sr89a9/xd///ndIkoRTTjkFGzdutD337NmzkZOTE3PvfvDBBxg8eDBGjBgBADj55JPxySefYM6cOXH74iIzcF0/v2EMGjQIeXl5AGIp7j/96U84/PDDtc/bt2/H3LlzcdFFF2nf9ezZEyeccAKWLVtmoMtpNDc3Y8GCBdpDKCcnB6eeeiq+//57HHbYYSntM3/+fOTn5+Of//yn9tAdMGAATj755Lj9feqpp1BUVIRnn30WPp8PANCtWzdcddVVluLIeJg0aRLOOuss7fNxxx2HG264Abt27UKPHj0AKP7s/fffH+Xl5di8eTPeeOMNXHnllTjvvPMAADNmzADDMJg/fz7+9Kc/obi4OOY8CxYswLp16/D6669j/PjxAIADDjgAgiDgiSeewMknn6xR0QUFBXjiiSfAcRwAYNu2bXj00UdRX19veex169bhk08+wQ033IAzzjgDADBt2jTs3LkTixcvxtFHH+1oLObPn4/S0lI8+eSTmgajuLgYV1xxhbbNli1bUFlZiXvvvRe9e/cGAEydOhU///xzzKJL47nnnkNdXR0++eQT9OzZEwBw0EEH4cwzz8R9992Ho48+GuPGjbOdx1agjdKWlhasWLECd999N3r16hVj5NDbhkIhrFmzBnfddRfy8/Nx7LHHAlBYDdI2O5C5bMfYWPXhtttug9frxYsvvqj9NnPmTBx99NG47777DKzaEUccgRNPPNH2/PX19QiHw+jVq1fcdhJEIhG0trbipptu0oS9U6ZMQUtLC+655x7s3btX0+cIgoDbbrsNlZWV2v5er9fSeJMkSRtTQRCwc+dOPPHEE6irq8Mpp5wCwNk1N+OFF15AQ0MDXnvtNW2fAw88EEceeSQeeeQRzJs3z7KfgUAAhx12GD788ENtvra2tuLLL7/ExRdfrG03cOBAR+PmIjNwDRUXlhg+fLjhM6H/m5qasGnTJmzduhWLFy8GoDzU7FBSUmJ4SyUPs2AwmPI+33//PQ488EDDm+H48eMTLhbLli3DQQcdpBkpZD8ScUBT2olgHp85c+bg1ltvxYcffohzzjkHu3fvxrJly3D//fdrbZZlGbNmzTIsfrNmzcKTTz6JZcuWYfbs2THnWbJkCXr27KkZKQTHHnss3nzzTfz888+aX3/06NGakQIYx83KUCEMlPktMdlInWXLluHggw82CEXnzJljaMvw4cPx6quvQpIkbNmyBVu3bsWGDRuwadOmuGzWkiVLLK/tsccei+uvvx6bNm3CoEGDHLd1586dBuaQYOzYsbjtttsMQloAltsOHjwYjz32mLZQy7IMno//KCVjkUzI7pIlS3DwwQdrRgoA8DyPo446Co8//rjBjWSej3bnF0XR0bm9Xi+eeeYZAEBVVRU2b96MLVu24MsvvwRgvOeLiooMRko8ECaURmlpKW666SYceOCBAJxdc/N1+u677zB8+HBUVFRo84llWRx44IEaCyOKomH8GYYBx3E47rjj8Pbbb+OXX37BmDFj8PnnnyMSiWiGqIvOh2uouLAEoX8Jtm3bhptvvhnfffcdPB4PBgwYoEUHxHv4mmlmhmEAKG9Wqe5TV1eH0tLSmP3KyspsjwkADQ0NlvulAvP45OXlYfbs2Vi4cCHOOeccfPjhhwgEAprx0dDQAAC2zBPRyZjR2NioLYg0SF+bmpq078zjxrKKZ9durEmb2jsmjY2NMYYQz/Mx3z333HN46qmn0NDQgLKyMowaNQqBQADNzc1xj00YGBpW/XeC8vJyPPnkk9pnr9eLyspKFBYWWm5PsxYejwfl5eUx49WzZ8+ERi7RaRC2zQkaGxst53RZWRlkWUZLS4v2nXk+mlFYWIjc3FyDDsSMtrY2RKNRbSy+/vpr3HXXXdi0aRNyc3MxbNgw7Tz0PZ+bm+u4T7feeqtm/HEch8LCQvTo0UO7xwFn19xsqDQ0NGDr1q2WhiWgGOvnnXeegb2bMmUKXnrpJey3336oqKjAwoULMWbMGCxcuBBTpkxxbHy5yDxcQ8VFQkiShPPOOw8ejwdvvvkmhg8fDp7nsWHDBrz77rsd3p7Kykrs3bs35vva2loMGDDAdr/8/HzU1dXFfL9o0SIMHz7c1oiyE0Caceyxx+K8887D1q1bsXDhQhx22GGa8UBEli+88ILlg91uASssLMTWrVtjvq+pqQEAS6bEKUib6urqDA/ljRs3oqGhARMnTgQQ+xZOxJYERUVFMdeDhJ4SvP/++7jnnntw9dVX44QTTtAivS6//HKsWLHCto2FhYVaX2mk2n+v16sJZ53AybazZs3CokWL8OOPP2LChAmW23z88cfw+/2W+hE7FBYWWs5zuu/V1dWOjzdjxgwsXrwY4XDYwCoSvPHGG7j33nvx5ptvIj8/HxdffLGmSevduzcYhsErr7yCr7/+2vE5zejfv3/CMU3lmufn52PKlCm45pprLI/p9Xpx6623Gu5lch+yLItjjjkGH3zwAS644AJ8++23uO222xz3yUXm4Yppf+Mgb93xUF9fj82bN+Okk07C6NGjNZqbROLEY0cygcmTJ+Prr79GOBzWvlu9enXC6IJJkybh22+/NdDWq1evxnnnnYdVq1ZpFDstDiaLthPMmDEDZWVlePHFF7Fq1Socd9xxhnMDyliOHj1a+1dXV4dHHnnE9hyTJ0/Gzp07sXz5csP37733HjweD8aMGeOobVYghog52dYDDzyAO++8E4DCFJnF0mbR8rRp0/DVV18Z3Hlff/01otGoYZ+CggKcc845mpHS2tqKZcuWxZ0/kydPxvLly2O0He+99x7Ky8vRt29fp93NGI499lj07dsXN998s2UE05dffol33nkHp512msGNkwiTJ0/Gl19+aWBORFHEwoULMXr0aHi93qTaefbZZ6OhoQEPP/xwzG81NTV49tlnMWjQIIwcORIrV65EOBzGeeedhz59+mhGPDFSErmwnDxX7JDKNZ8yZQo2b96sGULk37vvvos333wTHMdhwIABht/ol5rjjjsOe/bs0cT7rmg2u+AyKr9xFBQUYPny5fjuu+80hbsZpaWl6NmzJ1555RVUVlaioKAAX3/9NV588UUA8fUmmcAFF1ygaUHOPvtsNDU14ZFHHgHLsgYK2YyLLroIf/jDH3D++efj9NNPRygUwsMPP4wxY8Zg+vTpCIVC8Pv9uOeee3D55ZejtbUV8+bNc5w3geM4HHXUUXj55ZdRUVGB/fbbT/tt6NChOPbYY/HXv/4VO3fuxKhRo7B582Y89NBD6NWrF/r162d5zBNOOAGvvvoqLr74Ylx22WXo1asXvvjiC7z11lu45JJLLMNhnWLYsGE4/PDDcf/99yMUCmH48OH46quv8OWXX2pJ0Q4++GDMnz8f8+fPx9ixY/HFF1/g+++/Nxzn4osvxmeffYa5c+finHPOQV1dHR5++GGDZmXMmDF47bXXcM899+Dggw9GdXU1nnnmGezdu9fW7QIAZ511Ft577z2ceeaZuOSSS1BUVIR33nkH33//Pe666652LYjpQk5ODh599FGcf/75OP7443HWWWdhxIgRCAaD+OKLL/Dmm2/ikEMOweWXX57UcS+55BJ89dVXOP300zVG8+WXX8b27dvxz3/+M+l2jhs3DpdffjkefvhhbNy4EccffzyKi4uxfv16PPPMMwiHw5oRM3LkSPA8j/vvvx9nn302IpEIFixYgP/+978AYlk1MwoKCrB69WosWbIkaWM6lWt+5pln4t1338WZZ56Js88+G8XFxfjwww/xxhtv4Prrr094ziFDhmg6qiOOOCIpg9JF5tH5d7mLTsUpp5wCj8eDc889NyZXCY0nnngCFRUVuO666/DnP/8ZP//8M5588kkMGDAAS5cu7cAWA3379tUerJdddhkeeughnHvuuSgvL4/rLx8xYgReeuklCIKAP//5z7jjjjswceJEzJ8/H16vFwUFBXj00UchiiIuvvhiPPLII7j44ou1vBlOcNxxx0EURRx99NExD9S7774bZ511Fl5//XWcc845eOqpp3DkkUfi2WefNQhPaQQCAbz00ks4+OCD8cgjj+DCCy/UEnddeumljttlh/vvvx+nnXYaXnjhBZx//vn4/vvvMW/ePE1bc/755+P//u//8Mwzz+DCCy9ETU2NxrYQ9OvXDy+//DI4jsMVV1yBJ554Atdee63BAPnd736Hiy++GB999BHOPfdczJs3D5MmTcJtt92GhoYG2xDS8vJyvPbaaxg5ciTuuOMOXH755di9ezeeeOKJuFEuHQ2S++TEE0/Em2++ifPOOw/XXnsttm7divvuuw+PPfZY3Ky0Vhg8eDBeffVVlJaW4vrrr8fVV18NWZbx4osvYv/990+pnRdeeCGefvppAMBdd92F8847Dy+//DJmzpyJd955R4tu6du3L/7+97+jqqoKF154IW6++WYASvp4hmES3vNnn3029u7di7lz52LlypVJtTGVa15RUYHXX38dPXv2xN/+9jdccMEF+OWXX3DnnXdaCnitQO5dV0SbfWBkt3KUi30MRNBL3CmAIrDbf//9cc011+D000/vxNa5cOHChYt0wnX9uNjnsGrVKsybNw9XXnklRo4ciYaGBjz33HPIz893nPvDhQsXLlzsG3ANFRf7HIjP/LXXXsPu3buRk5ODKVOm4O6773brBrlw4cJFF4Pr+nHhwoULFy5cZC1cMa0LFy5cuHDhImvhGiouXLhw4cKFi6yFa6i4cOHChQsXLrIWrqHiwoULFy5cuMhadImoH1mWIUnp1wSzLJOR42YT3D7u++jq/QPcPnYFdPX+AW4fUzlWvGziBF3CUJEkGXV1zgrHOQXPsyguzkVTUxsEoWNr2XQU3D7u++jq/QPcPnYFdPX+AW4fU0FJSS44LrGh4rp+XLhw4cKFCxdZC9dQceHChQsXLlxkLVxDxYULFy5cuHCRtXANFRcuXLhw4cJF1qJLiGmdQIkMkiBJoqPtJYlBKMQhEglDFLumirsr9JHjeLCsa2+7cOHCRVdFlzdUZFlGMNiClpZGx0YKwd69LCSpa6q3CbpCHwOBPBQUlDgKc3PhwoULF/sWuryh0tRUh2CwBX5/Lvz+HLAs53hB4zhmn2UanGJf7qMsy4hEwmhpqQcAFBaWdnKLXLhw4cJFutGlDRVJEhEMtiIvrwh5eYVJ78/zbJeNhyfY1/vo9foAAC0t9cjPL3bdQC5cuHDRxdCln+qiKAKQ4fP5O7spLjIIYqyIotDJLXHhwoULF+lGlzZUdLjaha4MV5viwoULF10XSRsqDQ0NuPnmm3HggQdiwoQJ+OMf/4ilS5dqv3/33Xc44YQTMHbsWBx++OFYuHChYf9wOIxbb70V06ZNw/jx43HVVVehrq6u/T1x4cKFCxcuXHQ5JG2oXHnllVi+fDkefPBBvPXWWxg+fDjmzp2LTZs2YePGjTj//PNxwAEHYMGCBfi///s/XHPNNfjuu++0/f/2t7/hm2++waOPPooXXngBmzZtwmWXXZbWTrlw4cKFCxcuugaSEtNu3boV3377LV599VVMnDgRAPDXv/4VX3/9Nd5//33U1tZi6NChuOKKKwAAAwcOxOrVq/HPf/4T06ZNQ1VVFd555x089dRTmDRpEgDgwQcfxOGHH47ly5dj/Pjxae6ei87AJZech+7de+DGG//W2U1x4cKFCxf7OJIyVIqLi/H0009j9OjR2ncMo5RpbmpqwtKlSzF79mzDPlOnTsWdd94JWZaxbNky7TuC/v37o6KiAj/88EO7DBWejyWHJCl17QKRPTAMIO+b0bsJ0dX6yHFMzDzgONbwf6YgyzL+88N27NprrOKd6/fg6On9EPBlJsCuo/pnhyW/ViEqSJg+ujsAoLktgs+X7sCMMd1RVhQwbLtzbyu+XLYDgmgdZda9LBdzJveO0Rx9u2I3SotzMLJvseF7UZKw8H9bUdcUAgAM6VOM/UdVAgCaWiP4aPFWBEPWAuv8HC+O3r8ffF4OAPDZ0u3oVpyDMQOVEPequjZ8t2oPDp3cG7l+j2Hfddsb8N3KPZBlGQEfjyOm9kVBrtewzcadjfjml92Q6RuLYTBtZCWG9imKaU86rqMgSvjo+60YNaAU/bsXAAA27VLaIUnxb/CCXGU8vB7O8vfdta34fNkOxxGCLMvgwHE90K9SaUdnz1Mz6pvD+PLHHdh/dHdUluRYbkPm8vQx3VFumssEwbCAD/63Ba3BKBiGwYzxvTCkp9Ln6vo2/OeH7YgKEliWwczxPdGnIh8AsH5HA9Ztb8ARU/uCtdHYbdndhK9+3pXw2sVDj7JcHGpxT6WKzrqOST09CwoKcNBBBxm+++STT7B161bccMMNePvtt1FZWWn4vVu3bggGg6ivr0dVVRWKi4vh8/littmzZ0+KXVBuiuLi3JjvQyEOe/eylguYU2TLjZVJpLuPxHhNdcyThSQxYFkWhYU58PutI7wKCqwfNOnC9qpmvPzpOsvfKrvl4dgDBmb0/JnunxVEScb8d1dBlGTMmtIXOX4PFv2yGwu+2oSwKOOCE8YYtv/HB7/i6592xj3m9HG90LsiT/vc0hbB0++tgtfD4c27jzZs+/P6Grz5343a5//+tAuH7NcXfi+PL3/ahYX/2xr3XP16FmH2lD7YUd2MFz9ei7KiAJ776xwAwCufrccn329Ft9I8HDW9v2G/V5/7AZt2NmqfS4py8PvZQ7TPsizjmae/x47qlphzbtndjEeummnbpvZcx6W/VuHfX27Euh2NuOOC6QCAf7+6HKs21Traf2j/UswY29Pyt+c+WoMvl+1Iqj17m8K4/fz9Dd91xjy1wsLvt+GdrzfjkyXbccUfx2Pa6B4x2yz6ZQ8WfLUJIUHChSeOtTzO/77djPe/3aJ9Xrq2Gi/fegQAdQ4t2a791tQm4K9z9wMAvP7CUqzf3oDxwyoxcoB1/qcHXv8Jv2zYm2oXNexvuqfSgY6+ju16zfvxxx9x/fXXY86cOZg5cyZCoRC8XuObBfkciUQQDAZjfgcAn8+HcDiccjskSUZTU1vM95FIGJIkQRTlmDcBWZYRidq/HTCMsoCLopR2tsHrYZO2cGfMmISzzjoXH374PgQhisce+wcqK7vjH/94Ep9++hFaW1vQv/9AnHPOBZgyZSo2btyAM844Gc888zKGDh0GALj++r/gxx9/wIcffgGO4yDLEo45Zg4uu+xKzJlzJN5//x28+ebr2L59O1iWwZAhw3DZZVdi2LARAICTTjoGM2cegu+//xb19XW44477MHLkaDz11KP49NOPEY1GcNxxJ0KSJMiyPuavvvoS3nnnTdTUVKOsrBxHHXUszjhjbtqsfFFUyiM0NrYhGDRmH+Y4FgUFATQ1BSHavMmnA1U1zQCAHD+Pw6f0AQCs3d6AVZvrsG5LHepHVcbbPWV0VP+sEBUkRNVrXLO3BQW5XtTWK/dhdW0r6uuN7FJtQxAAMHl4N/QuNz44P1myDa0hAXuqm5Hn1Q3cuqYQZBkIR0Q0NLQZGIrqvYohUJzvQ31zGJIko2ZvC/ICHtSp5xrQowDjBpUZzvXThr3YtKsJ23Y3or6+FRu3KQkD20JRrc2NKktTWx/bj6YW5VlVVujH3sYQahvaDNvsrGnBjuoW8ByDY6b3BwOgtimERT/tQkswEnM8ID3XcY86Bxuaw3o/mpV+HBCHFfhu1R7srm1D9d7YvhLsrVfGc9KwcvTplh+3HVX1bfh2xR7UN4W043XmPLVCfaPSn2BYwF3P/4A/zh6MI6b2NWxTq7a9pr7Ndlw27VDmzsCehdi4sxGNLRHU1beCAbBHnZ/dS3Owu7YNjc36eDS1RgAAu6ub0KPY+uVqT62y7czxPVGS77PcJh4++WE7WoNR7K5qMtxT7UG6r2NBQcDRi3LKhspnn32Gv/zlL5gwYQIeeOABAIrBEYlEDNuRz4FAAH6/P+Z3QIkECgTaZ6FZUZJ2GVdlWcbdL/+IDdRbUUdiUK9CXH/KhKQX6rff/jceeGAeBEFE79598Le/3YitWzfj5ptvR3l5N3z77Ve45po/4667HsD++89A9+498MMP32Po0GEQRRHLly9FW1sb1q1bg+HDR2LVqlVobm7B1KkzsGjRl3jooftw7bU3YezY8di7dy8efvh+3HPPHXj++Ve1NixY8Abuvfch5OfnY8CAQXj44fvx7bdf48Ybb0FFRXe8+OKz+Pnn5ejRQ3kz++abr/DSS8/httvuQu/e/bBq1S+4445b0L17Dxx22JFpHVcrg1T/TcpoYrtwRDGQ8gMeHL1/PwBA2ao9WLW5Djv3tmY8qV6m+2eFaFQ3CsMREYJPN1ya2yIx7QlHFDfMfsMrMGFIueG3/63cg9aQgEhUNOwXiejniERFQ6KBiHr+8kI/6pvD2neCh9PcSwO6F2jXg0AQJWza1YT6phAEQUJdo7KYi5I+f8j+4YgY04+o+lv30lzsbQzFtHnJ6ioAwIh+JThGPffm3U1Y9NOuhNepPdcxFBZi2hxWx+iAsT0wqKd10sttVc3YXdsW0w8abaEoAGDqiMqYa2fGuu0N+HbFHoQsxq4z5qkVyDwtLfChtimMtxZtxPRRlcih3HxkDrQFo7Ztrq5TDJ6pIyqwaVcjZFkxFPMDHjS1KmM2uFehMr6C3ndBUK5La5xjN6rGzGGTe6PCxj0VD0t+rUJrMIq2sJD2Me/o65iSmfXyyy/j0ksvxcEHH4ynnnpKc+V0794d1dXVhm2rq6uRk5OD/Px8VFZWoqGhIcZYqa6uRkVFRYpdSBH7YOqNww47EsOGjcCoUaOxY8d2fPbZJ7jhhlswYcIk9O7dByeffCpmzz4Mr776IgBg+vQD8MMPiwEAv/66CjzvwahRo/Hjj0o4+XfffYNx48ahoKAAhYWFuO66v+Kww45EZWV3jBo1GkcffSw2bdpgaMPUqdMxefJ+GDZsBAQhio8++gDnnnsBpk2bgQEDBuL6629GSYlOZe7atQNerweVlT1QWVmJQw6Zg4cffhJjx07ooFHrGJC3C/rtoHup4o7cvbfVqFXoIqC7JKr1oog/vc1CG0IWTZ+FDoLjlBvSrF+RqJOIpppU5Fz0mMvqd2Q/lo290YvylOdVQ4vyHGpsDRuOp5xLNvxPgzygAz5ObbNxm2XragDAsKATHYLV8dKFiNquiEAbd8p33jhuWOKitdMOAUBQNRgDXmsNCw1yfYlhmo0gc+nAcT3RqzwXkaiEr3/ZbdxGva5tYfsacXtVI7e8KIC8gGLkNLdFDP8X5yuMCT2+UfXY4Yj1scMRUfvNrH9yCqI3ikSTq3GXjUiaUXn11Vdx++2347TTTsONN95oYAUmTZqEJUuWGLb//vvvMWHCBLAsi4kTJ0KSJCxbtgzTpk0DAGzevBlVVVWYPHlyO7viHAzD4PpTJsR1/QCZSy+fiusHAHr16qP9vW7dWgDARRedY9hGEATk5SnU7PTpB+C9995GOBzCDz8sxsSJk1BZ2QPLli3FKaecge+++wZHHXUMAGDcuAnYsmUznn/+n9i6dQt27NiGjRs3xBQs7NWrt/b3tm1bEY1GMWzYSO07n8+HIUOGap/nzDkSCxe+hz/+8QT06zcAkyfvh5kzD4nRMu3rIAsQRy2MlaU5YAC0hgQ0t0VTfuBkK4xGhHFhb03SUOHV0gfmhVw0GQ/0ekuPOcswkGQZZHNZnbZWQsXCPOU6EAOloVlZUGhDhXTNavEmhonfy8dsU9MQxLaqFjAMMG6w7nIi86I9wshEICwB/VwjxoudSBYAeC7WUKmqb0Ou36MtvkGVrfE7EIX7VWMmnMULJDFCeJbBIRN74YWP1+KLH3fg0Em9NeOWzC/SdzNkWcZe1YVUXuRHQY4XzW1RNLdFgVKgJagwKsWq24YeX7KuhGzGqFE1crw8q41nsiDGaTQLGKz2IilDZfPmzbjrrrtw6KGH4vzzz8fevbrQx+/347TTTsPvfvc7PPDAA/jd736HRYsW4eOPP8Y///lPAEBFRQWOOuoo3HTTTbjrrrsQCARwyy23YMqUKRg3blxaO5YIDMNoin878DxrWHg6G7QIWVafxI8//g/k5BiFxKTezfjxk+DxeLB8+Y9YunQJDjvsSHTv3h0LFryBPXt2Y/36dTjggJkAgE8//Rh33nkL5sw5AqNGjcFxx52ATZs24sEH77VtA6GlSFsIeF6fVkVFRXjuuVexcuUv+OGHxVi8+Dv8+9+vYe7c83HWWee2azyyCYL6UOM5fb74PBxKVR3D7trWLmeo0CyRZDJU2sLRmO3D5O3eE/t2z9sxKrShIsqGJ5bBUGEBSdS3J0YUY0EkmBmVhjiMiiBYMCpqG8kCQvvqf1TZlKG9i1CQo19vwhhllFFRFz0jo6L8HY9R8XDGBa2xJYwbn16MvpX5+OsZShqJkMqO5DgwVLwao6Jo1bIxczS5DizLYOrISrz5342oaQjhl021mqYpkaHSGhIQUlmP0gI/8nJ0RiUqSNpvZL7RBgOZQyEbtoZoWApyvSmPn3YdsthgdIqkXD+ffPIJotEo/vOf/2DGjBmGf3feeScGDx6MJ554AosWLcLxxx+Pf//737j//vs19gQAbr/9dkybNg2XXHIJ5s6diwEDBmDevHlp71hXR//+ShRJbe1e9OrVW/u3cOF7+PDD9wEoBsOUKdPwzTeLsHr1SkycOBljxoyDKIp45pn5GDBgEHr0UNTur7zyPI455njceOPfcOKJv8e4cROwc6ei8rdzW/Tp0xderw+//PKz9p0gCFi/Xo9++fTTj/D2229izJhxmDv3fDz9tHKezz//NCPj0lkgb2icqSgicf/sqo0Ve+/roNdc0n/94S7GuGo0RsXiBYG8EJh1ZfTCbmYjaHcbYU6IgUK2tWRUVIOxqTUCSZbRqBossmF/VUtgdjfJstYmEnIepdps5fYBEPOWngnQjIosyxAlSTufM0ZF2XZvUwiSLGO3KuaUZFlbUJNhVCRZjutO6kwIlJHr83A4YKzyHPx8qR6lIyUwVGpUwXZhrhdeD6cZps1tUY1N4VgGBbmKAWNgVIjrx45RUedkYTtebn6zjMoFF1yACy64IO42Bx54IA488EDb33NycnDHHXfgjjvuSObULkwYMGAg9t//ANx//9248spr0b//APz3v5/j5Zefxw033KJtN2PGgbj33jtQVlaOnj17AQBGjRqDTz75EKeffra2XbduFVix4mesXbsGeXl5+OabRViw4A0AiiDaHFIOKNfypJN+j2efnY+ysjL06zcAr732EvburdG2iUTCePzxR5Cbm4uxY8ejuroay5f/iHHjulZyP7Iomxm47qU5WLGpFrv3WkcN7MuQLVw/tKuwLSQgX314y7KsCWOtNSrqYmlhGBAINm4hjmXAsCZDRbY3VApyvWDU/Vvaomho0SMOJUkGyzE6o2JaaGlXsJlRiQoiNu5QBPq02wcAOCbzrp+I6Y2d1s7E16gY2SzNLRFRjM1IVAI5UjIaFXIMD5+a6yKTMGvKZo3viY8Xb8OqLfUIhgUEfLx2T0cECYIoaQYdAdGnlBUpGpR8ilEh+pS8gEdjrMj1kCRZm58hGx1PU5vOqKQKMu6JJA77AjKThcpFh+C22+7G008/jvvvvwvNzU3o0aMXrrvurzjiCD3fxLRp0yGKIiZMmKR9N2nSFPz441LMmKHnxLniimtw33134pJLzoPX68GgQUNw00234pZbbsCaNasxdqy1YXH++ZfA6/XhwQfvRVtbG2bNOhTTp+uG6tFHH4/GxkY8//w/UV1dhfz8fMyceQguvLBrlU3QFk3OuDD2KFMFtbVd0VDR/yYPXpoRoQ0VQdQXu3hi2viMimT5G9GoKNsQQ0XZxkpMy3Ms8nM8aFKNFOICIsfkOf04ZqFslDJcdEaFRNjofSR0v94/aw1OOkGLJsNRyXAujxPXDzFUqD4Hw6J2XI5l4h6HgGUZeHkWEUFCOCIiP/mAlYxDouYOAJQVBcBAYdUiUVE1VOhx0OcygaZPKVQiVvMoRqVZZVTycjwxYmV6DoVsxLSNqvHcHkbFp7pYf5NiWhedg2++WRrznd/vx2WXXYXLLrvKdr+CgkIsWrTY8N3pp59tYFMAoEePnnj44Sdi9j/kkDna32+++X7M7xzH4ZxzLsA559gzbaeccgZOOeUM29+7AuxdP8pTuiu6fgyMCnH9UN/Rgtow9VZnqVGxEdNa6UbMnxVDRd1eNu5nJzErzPOhqS2K3bVtBtZE09rIiRkV0g/Sd7Itg1hmjXb9ZEq3QVP8UUHSWINE4n3N9SNI2r4EbaGo5toK+HjH7fZ6OMVQydJF0kr8zrIKk6azgwkMlQaFUSktVBiVAsKoBKMao5JvYFSMoe+AfdRPU5ti6LSHUdGifrqA66frp1114aIDINi6fhRGpb45bOvr3ldh0KiYwpMBoDWkC2rJA5nnmBhjDogTnhzPUNHoe0YzBJyEJwN65M/WPc3GY5oWKTPDQ96GeY6NZSLUBYHnYw0Del5kKlKdXpAiURFhEvGTwPVijvqhr0FrSNAjfpKIPiHb2kW1dDasGFCz4NnIqMT2o0aL+DExKq0RtLRFte9oDRCdCBPILKNC2K+uwKi4hooLF2mAxqiYXD95AY/2prWnrmuxKlYaFXphNxgqcUKTAX2xNBsGtKESI6bV3opjxbSyxqhYGypFuYprZsueJsvzkWNHzYyK2j4Pz1BtNlL6Zi2D0ka9HZly/9DRPuGo7rKxYrBokAWNMCcGRiUsaInkkqlXRQTTdoxBZ4NcM54ymjkTq0dfpzaLlwzCqJSZGZW2iBKiDEW3QkcCCqJscK3ZGXLp0KjojEp2XoNk4BoqLlykAVZUMoEW+dPFBLVSnPBkwJj0LawtmtaGChk3s5iWdiWZ9SJ0iClrI6a1c1UU5auMSpWxHk8so2Lt+vFwrGaQRAWjnsXDxZ6TNRgqmaHio1Gj6yfqmFFRx14wGlwAEAwJSSV7I/BleWis1f2qR55J6v+UQWEyVCRZpsS0hFHRXT8k6ic/4DEYrorI2YHrp5VE/SSfOp+ACKhd148LFy4A6IuP1dt0d01Q29UYFf1vwcJQaQ3qjEokIaNiLaZ1xqhQGhX1mRxPTAvoC4DZHWc2uOzEtDzP6m2WjC4Tq9ol9IKYqcgfs+vHSQ4VINb1QzMqraGoNkZJMSqe7GZUBCvXjymEnDbEzYxKU2sEgiiBYaDV4SHhyS1tUY0Ryc/xGoqzCqJkEtNau4MbtTwqHsvfnUDPTLvvGyqumNaFizRAF9NaMCpqnY7q+q5mqMQaEXRkTqsFo2JnqHAW2VEBc2Zac90YfbEhzIksGxkRO+1nUZ41pS5qjIzyOdb1oxukdgu8x8JQYTvA9ROlXT+CpI1PvBwqgO76sdKotIUFzX2WjKGS9RoVMVbDFKNRoZklk6FC3D4l+T5tHhBGRZRk1KhFHPMCHrAMA04V6iquH4pRsRifUETQjIt2uX5cjYoLFy5o6OK82FuK+OvNb+f7OgzhyQldP8qD12ejlzC/zZqPG+83K41KvDwqgBL1YwXZZHA5cf0Ipqgf3oLBYBlGM5oyp1Exu36caVR4kyjYGPUjJJU+nyDrNSqa+J3WqMQT0xoNFSKkLSvUi+l6eU6r/0T0aCS3Cj3GdLbjUESMSahJ2BSfh9PKNKQCN+rHhQsXBtglfAP0t3opU+EenQRjMjZ1YU8Q9eO10TnYiWkNjErMb/qYawnfTBoTO9ePLaNi2t/W9cOxMWn/dbbF+pyZrvcTNbt+ko36EYwGF6AYKqHfjEbFKI6OF/WzV81KS5K9EeSrLkUy9qRWEq0Dolk6WY41JJrS4PYBXEbFhQsXJsRz/ZiTkXUV0N2xYlSScv2wxkVfP4ds+TdgTINuzqNCNrXNo2IjUozVqBjbQ4SzPBX1o7t+iJjW+rGa6TT69IIUiYqUgDlB1I/J4DJH/XRFjYpeeTtWo2I2doFYjYpWNZliVIDYcGKSe4WeK2aWzjxGevr81IW0gMuouHDhwgTBJjwZQExESleBZcI3g+snGTFt4oRvMfoVaszton7sXD8enkWuP3bhjWVUrDUqcV0/NoaKOfw13TCIaZOJ+uFNrh9DHpXUxLRZr1FRrwEfx/UjxHH9kPDjAhMzZ9aU6IyKPsZm3ZNZUJuO0GTAZVRcuHBhgpXPm4CslV3MTjH0R5Rj30LTwajEK0pIjBFao+I04RtgTHNPjBatFICN64fWodB0vkwV4LPSqNB9zIShIstyrOtHHXOPQ42KudYPYAxPTibhW9ZrVEiEloWYVrBgVMyGCtH/+ExGIK19Cvg4TaispdEXpJg5ZU76pocmt9NQcRkVFy6USsn/+tcr2udnnpmPk046Ju3nydRx0wntDc2KUemirp/EjIpzQ8UJo2KbmZau9eMw4RugZ6f1eznkqIaKOTTVHGkUpRgVIpyW1e3p36zAZlCjYq6QGxEkLXLEvJiaoaV4t8ijknLCt31Fo8JZaVQSi2m1CC+TUUqzIIRNASj3mmTMTAvEGip6aHL7DBVf6y6M8OzQDFZJlrFqS52W42VfgmuouEgZ//nPx3j00Yc6uxlZAUcalS5GqSSK+glHRe0tnUT92OklbDUqTmv9sGR79X91UybOE44wKoV5PrDqAWIy0wrGc2pp8qkU+sr3MvVbfDFtJhK+md+aI1FJy0iaMOrHlJlWMGQXphK+dSGNCq1vIjC7D+NlpiXjbWbPaOOCrg1E11Myu37Mxlw6GBVh+y/wf34fzs//AsOYzQCAlZvq8PfXf8ILH61J+bidBddQcZEyzGF1v2XEd/2QHB8d2qSMgza8rHJPALr7hyxYPtuoH2u3SPyoH1pMa9KoJMGoFOV6Y5N9Uf2h5zlZxHmONbyNC5JO6XeG6yeWURE1RiVRxWNz9JJdeDIJvXWCrNeoWBQRjc1Ma59HhRgb5mR6BZQAlmZU6ArKZmM8RkzbTkZF2LkawU8fBSMpbT7WvxTRcEir9rxyS11MG7Idv9mEb7IsA0IkwTYs5Ez493hvStVTv/vuW/zzn09hy5ZNCARyMG3adFx66ZXYsGEdrrjiYtx22z146qlHUVVVhVGjRuPGG/+G1157CR9/vBA878H//d/JOOOMudrxPvroA/zrX69g27ZtKCkpwdFHH4fTTjsLHKc8ZKqq9mD+/MexdOkStLW1YsyYcbjoossxaNBgfPjh+7jrrlsBADNmTMK8eU9px3355efx1ltvoLGxESNHjsI119yI3r37AABaWlrw+OOP4Ouvv0Q0GsXQocNx0UWXYdiwEdr+7767AK+++iJqamowefIUdO/eI6Vh7khYUckE2tt+F7NUjIaKFPMdoAhqC3O9CcW0nE14siNGhbMIT04gpgWAimIlEV95cUAzqPSID2Ub4tbh1ONo7h1eSeLFqNvQibzsxLSZdP2Y67lEoqI2PgkTvlFv+7TWBlAWVlIJOJBETg9ynSNZyqiQ+Rov4Rs9l4Omfti5fgrzaEaFMlRYff6YNSpBs5i2HYyKWLMZwU8eAcQo2N5jULd1A0q5FoR//hhBcRwAxTDasqcZg3oWJn38zsJv0lCRZRlt790JqWpDp5yfqxiMwLE3JGWsNDQ04MYbr8Yll1yB/fefgerqKtx++y144olHMGfOERBFES+++CxuueUOCIKAq6/+M8488084+ujj8PTTL+DTTz/CP/7xJGbMOAgDBw7CG2+8iqeeegyXXXYlJk6cgtWrV+LBB+9FY2MjLr/8KrS1teLCC+eiR4+euOeev8Pj8eLZZ5/GJZeci+effw2HHHIoWlpaMG/e3/Huux+joKAQy5cvw549u7Fixc+4//5HEI1GcPvtN+Oee27H44//A7Is4+qrL4PX68e99z6MvLw8fPzxQlx44VzMn/8chgwZhv/852M8+OC9uPzyv2DSpCn46qsv8fTTT6Bbt4oMXpH2gyyw/G8oPNnS9WN6CLcGVUZFSDU8Wf87NjOtvtjYJnyLI6adOqICDAOMHlCKR/79i3oOpcKtIUeMIINT14wo5fphGAYcxypvyYJkiAiK10fzGKUD0aiZUdEz09qNOQF525eh9N/MzpCFNZWEb9nIqEiyrM1d+sWCNxclpK5TOCJCkmRtPjnRqOQHKNePJqaV4zIqsiynzKhIzXsR/PghQAiD6zkS/kMvwXvzXsTped9AWrEQYzxLMLFoL+qkPES/XwfxgDngug1I6hydhd+s60d5F9p3UFNThUgkgoqKSlRWdseYMeNw770P4sQT/6Btc845F2DYsBEYNWoMJk6cjEAggIsuugx9+vTFaaedCQDYtGkDZFnGyy+/gBNO+D1OOun36N27Dw477EjMnXsB3n7732hpacEnn3yExsYG3H77vRgxYhQGDx6Cv/3tDvh8fixY8AZ8Pj/y8vIAAKWlZfB41DA8nsfNN9+OQYMGY/jwkTjuuBOwZs1qAMCyZT9g5coVuP32uzFy5Cj07dsP559/MUaOHI1///t1AMCbb/4Ls2fPwQkn/B/69OmLU089E9OnH9CBI50a4mWm/U2EJ5u0HeQBTpK+kTdru7d7OzEtbZzY1frhWZbKo2JkROIxKl4PhwPG9EBRns/AdsTmazEyDHR7PbxeTDFe9WSAMlQyMA/iaVQSu37sa9HQyEnC9ZPNGhXaAKFfLOJlpgWMzIdduQQ66odmVDxUZJVZTEtrVOhikrTrKBHkcCuCHz8IOdgEtqQ3AodeApb3YqU8CJui5WDEKIpCu5DLRtCbr0Ov2u/R9uEDkDNUIDPd+E0yKgzDIHDsDQldPzzPxkyqtCAF18/gwUMxe/ZhuPbaK1BaWobJk/fD/vsfgAMPnIlffvkJANCrV29t+0AggO7de2jn8fmUDIrRaBQNDfWoq6vFmDHjDOcYP34CBEHA1q1bsHHjBvTu3RfFxcXa7z6fHyNGjMTGjRtt21lSUorc3Dztc35+AcLhMABg3bo1kGUZJ554tGGfSCSibbNp0wbMnn2Y4fdRo8Zg/fp1Toap0yBYhDsS/CbCk03ajoIcD2qbwlrkj9MU+qmLaUl4srqfxqg46wu9SJkNIpqqF0xv0orGQVQYFSoZnBUy6vqJxnH9OIz6AZS+mhkVQBkfOwPMCtmsUaGNX1qjwpo1KmZDJSQg168YD8lG/dAh4LF5VChDhfotkQiaQJYlBL98GlL9LjC5xQgcfgUYb0BtH4fnWg7CDQeIWLpDxHdbRXTjmnBq7rfgI22QW2rBFJQ7Ok9n4jdpqACqwNETP/Mfw7NgmOyxOP/2tztx9tnn4vvv/4cffliM22//K8aMGafpTnjeeDntjCE7ESx5gCrHsdtGAh/nwcfGWRkkSUJubi6eeeblmN8IIwMwkGXjmJv7lY2wSslN0HWjfuwZlfwcL2qbwhqjkmp4sujEUOFSC0+mwWrGpBxzHvplxeze0YWosgPXT+YSvsUwKoKkLciJFjziOpPUXCxWQsuAj0/q5YrWqGSb6J42FA3hyWaNiuk60ZE/uqFinM+5fo82lpZRP2Ks64c2VIgAWilk6MxQifz4PsRtPwOcB4HDLgebV6L95vOwqA3moLX/JKzbuRk7xVrsFEtxmH8FuvMNkBp2g90HDJXfrOtnX8OqVSsxb97f0adPP/z+93/C/fc/guuvvxnLlv2A+vr6pI5VUlKKkpJSjYkh+Pnn5fB4POjZsxcGDhyM7du3or6+Tvs9HA5jzZpf0a+f4tdMlhUaMGAQWltbEY1G0atXb+3fK6+8gG++WQQAGDx4CH755WfDfmvW/JrUeToDYhzav6tqVOKl0CdvllrUTzS+64fjbBgVQ64W68y0LMWomMW0TByNCg02HqNCvYFr7h2SyMviTTmh6ycTGhWzmJaK+jFHpliBsECCKFmyBclE/AC6RkVG9iUcozPOcnFdP8bxI5E/oiRp88vMqLAsg3y1Rk8+VauHuAhpMS05H52ZVhdrO1uahe2/ILLsHQCAf8bp4Mr6GX7Xkr5FRc3Q8ns5VEkFAACpcbej83Q2XENlH0Fubi4WLPg3nnhiHnbs2I5Nmzbg888/Ra9efVBUVJT08f74x9OwYMEbeOutf2PHju349NOP8eyzT+PYY3+HvLw8HHro4SgsLMJf/3odfv11FTZsWI/bbrsJwWAQxx13AgDFvQQohkQ4HEp4zv32m4bBg4fglluux48/LsWOHdvx6KMP4sMP39eMn1NPPRNfffUlXn31RWzfvg1vvvk6/vvfz5PuX0cjLqOiaVQ6tEkZh2V4svpwz1dpb02jkohRsQndjc+o6CHhsWJaZRunjApd5yWGUaFdP1R4Mv0/HXaaMOongxoVwp4oRQnjG4c0iJCU7kcBxQgkE/FjPme26VQ0A5dhDC9bZsaL/J+nak1IYULaNWZlUPzugAHYf1Ql+lXm68emIqvI+Oaq9wg9PnYuJStIbY0IffkPADI8w2fCMzRWy0eOE45KmqE1ZmApqkUl4kdq2JPwPNkA11DZR9CvX3/ceef9+PHHpTjrrD/hwgvngmU5/P3v81IKdf7jH0/FxRdfjtdffwWnnvp/+Oc/n8Qpp5yByy67CgCQl5eHRx+dj/z8Alx++UW46KJzEA6H8eSTz6BHj54AgAkTJmPEiFG48MKz8e233yQ8J8dxeOihJzBs2AjcfPN1OOOMk/HTT8tx5533Y+LEyQCA/fefgVtuuQMLF76HM844GYsWfYmTTz416f51NATKDWEGQ7kVuhLMrh86miJfZVTaTIxKovBkc+imU42KXqHauJ9DQkVzWVoyKrTrRxNRKgc2UPoJFplMJnwzCzDpzLTOGBVWOw45Fh1qm0zED6AYAeRaZ5tORTNwTfcqnUeFnst5fmKoKHPZYKhYGKWzJvbCOUePMLhurMS05FqFDGJaZwJoWZYR+upZyKFmsCW94Jv2J8vtiMEYFUSt/WMHlaFaJIzKvmGoZL/z34WG6dMPsIyA6dmzF775Zqnhuxtv/FvMduZtTjzxD/jDH/5oKxju2bMX7r77Adv2FBQU4Omnn6e+mY25c883bHPkkcfgyCP19PdFRUW44YZbbI8JAIccMgeHHDLH8N35518cd5/OhlUCKYKu6voxhidLhv6RiIe2kACRSoZml/BN0wfEiGnpv62NGENRwiRq/RjOT7EdMYyKlesnRqNCJXxLlJk2A64fwljl+T2oawojEqU1KokZFY+F1obO4xFIos4Pgc/DIhwVsy6Xih37aSeoJoxKm8lQoUXciWBVlDBPLdsQsmBUEhmX0V+/VHUpPPyzzgfDW4cy+7TChDqjUlbo1w2VBtf148LFbwa6G8Le9dOlGRXRuMATt0FLKIpwRF/o7aJ+zDksCAzVk+NF/aSQmZZGPI0KbVhoeVTMxeZEOaFGpSNq/RB3QiQqarlVHLl+aK2NYGGoWFSaToRszaViV+6CFtPS15wwH2ZGxWlUDkBlXhZlzaC1cv1EHLh+pOYahL9X0jn4pvwfuJLettsSsW84KiKkuq7yAh5US4rrR25rgBwJOu5HZ8E1VFy4sMHqLXW46vFv8cvGvQm3jZuZVltE09u+zoYhGZtsfLiTiIe2kKC5fRgmjtDURkxL5xyJNSAojYoWnqxG/STJqMTLo0KHjMZE/VBh1YlcP8VyPXKYcEbzqJDFT5RkLW4vWdcPWUgLclPXqIj1u5DHK23KOo2KLaOi13uiDWbNUIkYDRW76C4rkDkRpTRAhHVMRqMiyzJC37wICBFw3YfCM+rQuOclxlRTW0SbD7kBD4KyF82SkrJiX3D/uIaKCxc2WLW5DvXNYazcVJdwW3rRNEPXT3QtS8XMqND9K1L1DY0tYYOQ1k5PpYUnx2hUdCMhJurHwKio28vG/5MV04oWYlrRwlBJVkwr7FyN4xtewNl5/82M60fQ35bNcCLMJG2mI1Do5GX+JKJ+ohuXoO3fN+Ac6VWM8OzIugrKukYlNmIHIOygfs11RkUV0yYZmQNYzxNiVNJjLtiEPWu/b1wMcfsKgOXhP+BMMPGqbkJn00i2W55j4Fe/q9IEtdnv/nENFRcubCBqb+eJt7WqxkpAFku5i1EqZv0IGS8GQHmREhHWGhLQpNaKiZfKXUv4Zk6Tn2QeFdnk+nGqM6d1RPESvpFqyp4kwpNlUUD425fAQsZAvhqIJo6QSxZEOJtjEr06TdRG2AGyGAOpRf3IkSDC370KAMhDG87P/wJlq1+HHG5ztH9HwM71w1NiZ3r+kDE1u37i5ZMyg66eTIwRkmKfdo3FyyYsh1sR/t8rAADvhGPAFnVPeF7CpjW2qPWafLxmkO1LgtrfiKHStRYIF0ZkSvtB3nwkB/NHjCOk1ArmdbFpaI76oWvvBHw8AuoDfnetskjFM1TsGRUHhgoVZhpT6ydpRkWyCE+2YlQYw/8CpT3wmOZAdOV/tLdWlpGR07LdUZuSQVSrpcQatBNOdRSkH3SV4AIqD0jAYdRPZPn7kNsawOSXY5V/IiQZKK5ehsZ/3YC2TT8nPkAHwNb1Q64lZXRzLKv1nYyNZkwk4fqh50lU06gox41EdcMonpg2vOxdJcqnqAe8Y49ydF6NUWlRMn8bDBWSS8VlVDoXShVgxlGODxf7LiIR5SbkuPQGsSXDqMSt9dNVw5Opv2kRKlkASgoU18Hu2lYA8UWdtOvFKuMtYKVR0cdcq1BtyiqabMI3y1o/VoZKjJhWf1PmqUVGaq1H+Md3AQAhVqnWnNeyzVGbkkGEchnQKfMTpc8nIG0mOgyeY7V08YCzhG9iwy5EVnwCAPBPPwUrig/Bo82HIegtgdxShz2v3wGxbqezDmUQdveqlkdFlA3GDDFUzFE/yYlpYzUqedT4EveYnZhWatiN6Coln5Rv/z+Bcfis0xiVVr0CtpI/BvtULpUuHZ7MshwCgVy0tDRAEKLw+3PAsvZ+cjMkicmIPzmbsC/3UZZlRCJhtLTUIxDIi5u+PxWQcXESpRE36uc3kEJfopgI8mZaWuDHzppWnVHx2l8fmokSJVn7TA89HfVDVzg2Rv3A8L/zPCr6/vESvkVjxLTxXT/hHxYA0RDYbgOxJtIf4xo+Q35bBhiVqL54ej0soAZyOF1MSX9IZIiHZ5BDRfo4cf2Ev/8XIIng+owF32ccfL+uxSahAosHnI9Dal+DWLMFQtUGcAWJXRaZhN29SifkszJUzK6fVMS0dMK3gI/X0u2HIiICPp7K02M8duj71wFZBNdnHPheoxyfl7wcNGiuH07rl+76qYIsSwn1Lp2JLm2oAEBBQQk8Hh9aWhoQCrUmtS/LsgYxX1dEV+hjIJCHgoKSxBsmCfJAc8KE2Pm9Acr1s28PcwzMmWnJw50YDSUFSlSBxqjEebunRciiKINsKklGY4g+n7Yvx1BjnGIeFSZeeHJswjdNTEuFJ5sjgsT6nRDWK4kQ/fv/CfWLdwANQEHb9rQvDPSbeEqMCmdkVDwci1zKUEmU8E3Ys07J68Gw8E/9o7KPukgGBQ5ceX+INVsgNe9F8hlZ0gvb8GQq4Zs2l+MZKqmIaSXJEOLu93JoCwuqoNanX0eKfRR2rFTHloN/6slJ9dVLMX6A7sJjWQa10TzILAdGjEBuqQOTX5bUsTsS7TJU5s+fj2+++QYvvfQSAOC0007DkiVLLLe99957cfzxx0MURYwfP16rlktwySWX4NJLL21PcyzBMAxycvIQCOSqSamcKdA5jkFhYQ4aG9v2WcYhEbpCHzmOTzuTQuDU9UMXsovn+ul6jIr+N22okDEoVV0/exsU12tcMS3FqAiSBJ+6nBk0KqLRMCJgmTQUJaRdPyZDJWrBqGiuHzo82fRbZMmbgCyD7zcRXLeBaPVFEZZ5+KQwpPrd4Ep6OmqbExCNipfnDPoG5xoVYz0bnmfh4TnwHAtBlGJEujRkWUZ48RsAAM+wA8EWVQIw5lHhypTCd1JTTTLdygjsUgkY86jo2WtJP0gYcbsMFUG/TzwcC59qqBDXj5mtkWUZ4R/eUr4bOUsbW6cwu1vJdeRYBhGwkPMqwDTtgrBjJbzDZyZ17I5EyobKK6+8gocffhiTJk3Svnv00UcRjUa1z7Is44orrkBjYyMOPVSJ996yZQvC4TDeffddlJaWatvm5OSk2hRHYBgGHMepupXE4HkWfr8fwaBom7l1X8dvoY/tAVkYEzEqtAESN+qnixkqRrbDQqOSrzAqZCu7rLT0PoC9QSLaGC28RfXkVMW0VrV+jIyKvsgo59Z1DSQiiOcYiHvWQ9i6HGAYeKecCABgOA5bhTIM8eyBWLU+rYZKhBJh0ouTU0aFFM0jUT+kfwO652NHTasWxWUFcetPkKo2AJwX3gnHad8TwzQcEcCqb+tSc+KcRJkGLcKmYchMS7kVCTMUVt1rqRkqukGrMSocA7+NEUQMTGHrckg1mwHeB+/4Y8yHTQizKFdjVNS+R/tOhW/FAkR++QieoQeCsXjpkynXVGch6TNXVVXhlltuweLFi9GvXz/Db+bieC+//DJ++eUXvPvuu8jNzQUArF27Fnl5eRg2bFjKjXbhoiMgmtwIdqA1DJauH6Zrun7oYREkWQstNotpCeyy0gLqiwTLQJRkg3jVzt1D57lQEr6pbZLIfsr/ySZ8s6z1Q6K/qAVMC082VMXV34a1t+AhB4Ar6qG2k8FmoVw1VDYAaXyDJeHJHlPUj6cdjAoA/OWP4xEVJNtFSpYlra/e0YeCzS3WftOYiKgEtkBhVMRsYFQ0tsQspo3NTMuxOqNCWLP25FGJmpg3YqgENUNFNxRlWUJk6QIAgHfUoWADBUn2NJZRCVCMCgCE+u4P37pPIDdWQdiyDJ4Bk2OO8dKn6/DNL7tx69mT0bsiP+b3jkDSnPmqVavg8Xjw3nvvYezYsbbb1dXV4eGHH8aFF16IAQMGaN+vXbsWAwcOTK21Llx0IARNoxJ/O/PbvRmZrJrrBG2hKFZsqk17MTyjmFZf4El/S1WNCkGiVO4aO2HDopgZHEDJ2cJapNDXMtMmK6a1zEyrho5SBpQWnqxaSHR2Ua5uE8TdawCWg3eizjBwHIMtgrpgV21w1jCHMLp+9HH2tUOjQr6P9yYtbF0OqX4H4AnAO/ZIw29+A6Oi9FtubYAsRmOO05FIlJnWqFFhDS7LSFSkGBXnahsPHR1GGbQ66xTrVhI2LYVUp47tmMOT66QKW0aFzHfOB+/IQ5S+/fyhJeu7YUcDBFFCbVPnRc8mzajMmjULs2bNSrjdP/7xD/j9fsydO9fw/bp16yAIAubOnYs1a9agoqICZ5xxBo477jibIzkDn4R16wTE2rbSHHQVuH2MD3phjDe/aE2kz8vHvMXTb7gs5aZIB5z0761Fm/Dl8p245ITRmDKiIm3npkN/JUnWmCOOZcDzLMqKA2Cgu34CPj7uOHIcA0QBMPp4m3Uw2v7quVj1XHSkDccx2jk9Hs7Rs4EsJDLkmCxxsqycl86w6vfx4DkWXsIaCPpvzKoPIQPwDp0Bb1G59j3PsZqhIjfuASu0gfXnqW1u371IXD8BP29wsfm8zvpPFkzCqHh4NuF+siyjbfkHAAD/6Nnw5BrftnPUPCFhQQKfVwjG44McDYMN1oNLUmuRTpC5wZv6SO5TSYZiAUPRIPl9nM72Ua5Bn8e4f7xrSK4JXaLA5+W0GkoRQQLPs4iSY3sZRJYrYe3+cUfAk5c8mwLE1mjKy/GA51ldvM4wCIydg8gvHysupqo14HuNNOzTqlZAL8rzddqakRGnU0tLC9544w1ccskl8PmM9O/69eshSRIuu+wyVFZWYtGiRbj++usRjUZx0kknpXQ+lmVQXJybjqbHoKDA3jfbVeD20RrEX8t7uLjzS1Z1TywDlJbmxfzO+/R8CUWFORm5yeP1r14NTWyNiGm9TwIBqmIrAwTUTKY+L6+dp7jAjzr1TayoIBD3/F6eQxsE5Ob6te1YaqwYRr/Pwyq5wfMsiotzkaOe2+PlUVio691KSnK1ukPxkKvWteE9vLFfADhy/bmQ2g6grDQPDMMgP09hjcji04urhbR9BcCwqDj49/BQ/c3L9aFN9iHM5cAntiGPaYOv2Gg4pnovkrf0spJc5FE1evLzfI6ueb6aLp+82ecEPAn3a9u4HA01m8F4fKg48Hfgco3bl6r7C6KMwsIcNBWWI7p3B3LkFuRk6HntBH41f0nAb+xjoTr2SgCGMh5eL4eSkjz4fTxag1H4Al5tTubn+S3HyOoatqquuQilBSwry0dBrjJ/WF6ZY8TY7xHdCqluJxhvABUHHg/On9p4lbUY2avy0lwUF+dq7GZung+lPUogjZmJ5h8/BbNjOYpHT9G2l2UZzW3KMXpWFmp96+g1IyOGymeffYZIJIITTzwx5rcPPvgAoihqmpVhw4Zh165deOaZZ1I2VCRJRlNTelM0cxyLgoIAmpqCMTVGugrcPsZHSH27DIcF1Nfbh7bXNioLGMeyltu1hfRsn7V1rUn5thPBSf+aWpUIu7qGYNx+JIuWVj1yLxKV0NikJO+QZVk7T3G+TzNUJFGMe35CZNTVt6LAr7sNCMJR/TrUqf9zDIP6+laEw8rDNBiMoLZOP0dTYxBCOLGrgW3cg3wmiGAwgqZmI8Xd0hpBfX0r9jYo/eM5Fg0NbZCFCHL3/AQODJrVMgFzAisAAN5BU9GCfIDqb0TtS5DNhU9sQ+Oe3fD4uin9aOe9SAyMUFvEkHxGliRH1zyqskXaXKWuoR2aF/0bAOAdPhNNER6IGLePRpRxbwtG0dQUhKeoAtG9O9C0azvCxYOcdSwDaGpRrq8oGscmGFSuYTgqxMxlL8+iFUD13hY0q/NeFIzzOd41bFP3IddpML8bdR8+iXF1LcgNRNBSW4H6+kq0qm0o2vwFAMA74mA0BQEEU7tvQ0FjdK0UJW1W5khDQxD1Ba2QyocC+BRt29Ya+hSKCJoRLEaV65jONaOgIODoxS1jhspBBx2EgoJYusrv98d8N2TIELz33nvtOmemolZEKuNkV4XbR2toN6gkx92XLEAsx1huRwtCI1ER6XP86IjXv9agumCEhLReZ/pYoiQhElFT6DP6OJTk+7BR3cbDsXHPTzQD4agehWaIABL160Ae+CxrHHNBlLUiiIAy9on6LNbvwvi1j6NHfh4WCedqizZBVG1PSD0nr/Yj9PUrGLjhSxyXMwyLQwejB1ePsV4l6yw/9qjY86pdCbK5KEINhOZ6MKZtUpmnsixrb+osY0wWlmjMCYi0iow2x8bfT6zaAGH3WoDlwY8+3HJbj8pIhiICRFECX6QYZUJjDbhOfN6Q5HgsY1o31M4Lgj6HOHUuE9dYWzCKCJkHrPX9bnkNKRcmDxFn5n0FYU0YAwAMCAC7dkgQhJGIRET042uQ27QZYDnwIw9t1z1rjmzy8sp11aJ+yL1WpuhIxdrtiAaDYDwKo9TQrBg6PMeCYxjNOOnoNSMjjqalS5di2rRpMd83NTVhypQpWLBggeH7FStWYPDgwZloigsXKcNpeDLxWfM2yk1ak+Iky226QVJ/01Va04GYWj8WIkVaUJsopwd5s3ISnqyFQqsrLC2mpcfYiR4ouvJTsLKI7nwjfEKTbWZaPccFAynUjOg6JZnbdN86+CN1ODyg1LLhB0yxDD0m49LGKGyyFGxM2DYnoKOkPDxnYOycsndmPUqi/SIr/6PsN2iqIdKHBp1HBQD4QsVQkZo7N/LHXkxL1XsSjcJwPYJJjMmlk/B8ddvBL7gKRwd+BABM9G5CHhsGk1uMrSXKOtm9eTWkxj2IihIO8a9Ujj9of9uxdQq7qB86yg0A2NxiMLklgCxB3LtF2741qDwz8gK844zumUDaGZXdu3ejvr7eMvy4oKAAU6dOxUMPPYTS0lL07dsXn376Kd577z3Mnz8/3U1x4aJdEJOM+rEKTQZguME7OvBHlmVNIBmKOEt26PzY+t9KfZTY1OR0iHK8hG+AMdcEgTn7rflvci7y4JVNtYIShSfLoRZE1/1P+1wa2QVJ6mfYhrSHDiuNrlkEqNErPCPhWOZL9PNWQ5JhiPShQYwqYqjIbQ1x2+YUtO7Bay5KmGTUj/7Zftyk1noIm5Yqxx91qO125HpHohI27WrCsCJiqHRuLhUtPNmUM4RO+EbnUQH0CKZQREw6j0rkp4VAuAWHBlZiVbQXDvKvAaCM3Y7QKLTs2YaR3p2I/LQQgyM8xniVEgvesUe0p5uWbbQzVACA6zYAwuY6iFUbwXcfCgBoVl1ReQEPOhNpZ1RqahRr2ZxTheCuu+7CkUceiVtuuQXHHHMMPvzwQ8ybNw8HHHBAupviwkW74DiPClmgbXyt9POwo0OU6SiD9Bsq8cOTAT2NPuDAUCHhobZJ3ihXk8k4NDAq1BAnYlSia78CxIj2uSyyE6JNUUKyQPk4GdFVioagvud0AEA/rhoAsFIeBK7YOpEbGZdWzVBJD6NCcqgwjDIe9Ft0vNw1NMy1ZeKF3kZXfa7Unek+FFxZX9vt8nI86N9diQS644UfsHS7Mv/kLGVU6BB18/yiGRUtzb0DbYXU1ghh0w/a57l5/0VPvh4RmYdn2EHwezl8GhoDAIiu+x8OlxYBAFoGHgquuEfKfSQws5g5pjwqksFQUdKGSNUbte9aVLfxPm2o3HPPPVr6fIIxY8bEzZWSl5eH66+/Hv/973+xYsUKvPPOO5g9e3Z7muHCRUagFSVM5PpJwKgYXD8dbKgQtw+QftcPbRA4cf0kMlQ4K0ZFov+OTfhG3or1MgXG7eLZKbIkIqJWpG0qUMSd5dFdkCQZ47xbcH3hu+jL1Wj9Iu0azm6F3FoHJlCAhiHH4KdIH/XcDP7HTrI4k9o/hhgqSlSSlCZGRcuh4lEKrnoNrp/kqidrn20YFVmIIPrrf5Vjx2FTAGXeX/WH8Rg/uAyCKOPxT5TKyXKwCbIQibtvJmFnqNCGsrkcBJ3vJBlGJbpmESCJYEv7oEXyIZ9VhLw/SYPA+HLh83LYIpRjB9dbMf4YCcsjfREZcXQaeqrcH7QxTwwXK0aFrVDWbLFqg/YSort+9mFDxYWLrgzHCd/i1PkBFNcPeSR2tOsnaDBUMseo2BkqSbl+tKJwNFOj/27p+lEXVLooITEGGQZx/erCxsWQW2rB+POxq7+SnrxUrIEshHFM4EdUco34fe73EKLKGBJDZSIUDYFn+ExwHi/eb5uAajEf/wmNQjNnrykgbW1FmhkVKn0+YNQlOK/1Yxwnu0VY2LgYcrgFTF4p+L4TEh43x8/j4hNGo1d5LoKyFxKvGK6d6f7RXizMtX4MRQl1YThg0qho4x1/PsuSiOivXyrbjjkc74X1sN+l8mgA0DLT/o+bAjAsdkhleKVlOnhP+lQZZD4EfJye68iiojtX1hdgOMjBRsitdQCgRbO5hooLF1kKx2Jaol2Io4fQ0+h3MKNChUbTRks6YNSPSJaun7yAR6vCm5cT/2FHDD1BSkKjwuhvi2R7rR1xjBSprQGh/70CAPCMmg0hpxsapQBYSOi+5xuUcS0AgF58PQZHVgMAooKMCrYBveTdAMPCM/xg8CyDvVIB7mz8HT4Mjo/RetAg49ICJQeF3NaQlvpPxPWjGSp09eQExiFBjOvHph/RNV8pvw8/2LIujBVYhlGrLzOI+ksAAHInGiqC5ECjYjKEfSloVIQtP0JurQcTKAA/YDJ+kQbi/bbxeKN1PzTwSp07on3ZInRD7h/vx+OtRyIKPq0pDIixSmcYZinhMAHD+8CW9la+r1LcP4RRyXUNFRcushOaRiWBcWFHJdPQatF0MKWSWUbF+DdhHDhTkraLjh+Fc48ZgaI8n/kQBmgLhW3Uj4VGhUT9WDAqdkJaWZYRWvQsEG4FW9oX3rFHgaWyxvas+hoA0CQpBsV+ke8gR0MQRAn7+ZTU91zvMWBzi2NdJvEy76qToFlWE9KJUSDS/vxPWn0Y1UAximmTq/VDYLVQivW7IFatV4y0oTOSaqMWDutXGKfOjPxJpFEhGWjpbfwWUT+JjAnNRTbsIDCcBzzH4bPQaHwbHgoPMYC8ivEQiohgckug2gWOr5sTkGPRFbCtNCqArlMRVZ1KS0jRqBT4Oi/iB3ANFRcubOE06keQrKlkGmxnMSod5PoB9Fo45gVgeL8STBuZOGW6lZhWsmBRlL+tNSqyrGtn7BiV6NqvIG7/BeB4+A8+DwzHawUDAYCVlTH7lzQHNWI+ctGG8LJ3IEYjmOLbBADwDjvI0GaCeAJLMi4RmQc8ihGUjhDlGNePIS18qhqV2H5E1ypsCt9nLNicoqTaqPXdpxoqDbuS2j+dMLMlBIbqySZDxahRIYah/bWWWmoh7lSYOM/QAwEYx5T8TQygUESAKMnasya9jApx/VgxKiZDRdWpRNcsQnTTD/C17MRVBQsxeeU9kBqr0tamZOEaKi5c2MC564c81OLUAyKGSpra5hS064cuiJYOmIeFJNKKxyzFg86o2FRMtmBarKJ+ZM0FZdVmGZGfPgQA+CadoOU7YVm9YCAAbBNKUcNV4t22iUrffvkYPde9gXw2hDYmF1wfJVLDyQJPQNPtbE6h0p406FToysmASaPicMEzG1jmfsiiAGHdt8q2ww5Muo1k/rcWKInFhC3LO5xdJLATv+tFCXW9lWUeFQdRP9F13wKQwXUfplWOprcn88ZvcVwg3YxKrKFix6jw/SeBqxwCREMIffY4ftfyGvrwtQDHA3ziUhSZgmuouHBhAVnWH1aJlnar/CFmaK6fDmZUzLqUdLIq5ggmLTtqqoYKS6J+rBkVK3aFnIuuUK25fiwYFal6I+SmKoD3wjNilvY9yzLYLpRCVB+J34UHw+fhsCLaB9/I4wEAJfVKevzNgZFgWOXhbxahxss/Qr+xMyojkY5cKnTlZOX/FBiVBGJaYetyyKFmMDlF4HqPSbqNpO/NRYMBjx9yax2kmk1JHycdMLNxBMRQlmQ5JteKZdSPjVBZlmUtGaBnqJ52gzZqeZNLSRBlw70az+BNFmQ+BHz6XGBtDBWG9yJw9DXwjFFyuLCQ8WO4L+oPur7dyefaA9dQceHCAvQinMi4sIsioMFaqOw7Am0xhkr6BLXmYYmoC2aqjApvIaalGRUZ+oPVPObEJpEp2t4q4ie6XknuxvefBMajh05zLAMBHBazE1CTOxhLw/21Rf4LcSL4wdO1bbfk6Qt1bP6RxK4fKc2GStyon1Qz05r6FV2r6HY8Q2ZoRloyIDaBwPDg+4xTjknlF+lImCPGCOh5S8bUUqOSgFERdq+D3FQNePzg++vh6rQxyFtcK1L8j+fYtGaBtXL9cDauHwBgWB7+qX9A4Ngb8VTbEXih9SDkFJemrT2pwDVUXLiwgCFENqFGxfoNjUY2RP0A6WVUYjQqQvtcP7yFmNZ8DvJgJW/FvKZRIYYgrVExtVeMIrpxMQDAM3h/w2/kDfNbZjKW9fgDIvBootSoCPgPPAvbS/bDu20TEPKVafuZQ9LjvQkbGRXF9SOlwfWjv+ETMW0aon4ow0UKNkHcoaZ1H2IcN6fQ3+ABfoCyeAubfugU94+960f/bJ7LWq2fsKDNQTujNEIiowZM1mrmAMa5Qcab51jte5JcLZ1uHyB+1E+855FcNhC/hhS3lRue7MJFFkKIs1iaodX6icuokGO1v23JIJOuH3NfiFYiddePyqiIRMQsx7zxEQPFLHY0RP0QRsXUDmHbL0C4VXFf9Bhh+I0YOnQ+GLI4iaIEhuOxptth+CI0yqg1SML1QwsY2bQyKsT1o+seWIYBxzIJc9cQxKbQ1z8Lm5cCsgS2tC+4otSypdKMIt97DMD7ILfUQqrZnNLx2gP7Wj96n81uTDKOpMAnYG2oRGq2IaKWZOCHGrOtW4lpAZ2tITlL0imkBaClByjI0TUmJKzfnIWZBjGcWIYxGDmdgc49uwsXWQo6FLa9tX4AKiFZZ7t+0phLJZZRIVVlU3vQ0nkslOPHbkOMEMGsUTGk0LfWqAjrVTHo4P1jcoBobhkqsy1hI4jRqtf6oSj8JBgV1uD6SZ+YNmrKo+LzcDjryGFgmCSKEsZhVIQN3yvfDZqachsNbi/eC77PWAibliC66Qdw3QakfNxUkCiPCgC9erIWRqwaE3EMFVmSUPPBE4Akgu87HlyFsdCuh7OeN34vh5ZgVHP9pNtQOXy/vijI9WLaKD3yzgmjQoyy3ADvqLhnJuEyKi5cWMAQIuuQUbHLTAtkk0Ylc4xKtJ1iWp6KugCs/efEQInVqMQ3VORwK4RtPyvnGRzrvtAf3JL2lkkWfq0oodo/Pi6jYj8H6PBrXaPSfkMlbMqjAgDTR3fH/qO6Oz6Ghzf3Qx2PllqIe9YBYMAP3C/lNtKMFQDwAyYDAIStP6Z8zFRhpyljqQzSdhqVCBXZZjZ0wiv+g/Cu9YA3AN+M02N0JgbXDzXefpMRlG5DpbIkByccONDgvomnUSHIljo/gGuouHBhiXg6iZhtnUT9aBqVNDQuCQRVjQpZeIJpFdNaR/20NzxZMLl3DOc0aVR01w/5HZDVMabXEWHrT0rNleIe4Ep6xZ6besOUza4fNYkcMVho1w/HsoZ6QvEWGdZSo9Jgu71TaIyKw3T5VjAb2cToiW5QND1c9yFg80pSPr5W3VqdM3zPEQDDQG6sgtRSm/JxU0G8BI1kDkYJo2KK+iEwi4+lUDOCi98EAORM/YNlhAy9Dz3ehK1pyZDrxwpOGBXXUHHhIsuRdtePplHpHEalJF+JcMlkeHJ7xbR6rZVYRoWMn1YoUltszGJaa0ZF2LwUAMD3n2x5biuNCi1EFUVZ61+83ClOXT9awrRIW7sL9EUtDKhkQTQtBDzHQBbCepK3QdPa1UZzgjHGlwu2rL/ynZoYraNgnjs0yHcxGhWv0VAxj7Ww5UdACMPbrQ+8I2dantdjIaYF9DT6xPWTqIZQOmCX8I2Ga6i4cJHlSLvrp5M1KqQ4YEbFtILRr58stPBkdeGlx4q84RO3TEzCN/LGTolpte8iQQg7lBwoJOLEDJpR0TUqlE5DlGwNgniuIMN29OLgzVGSaKH97h/BxoBKFvT+Hg4IffE05MY9YHx58AywNvCcwirBGN9TETQLHWyoaGycxbXSMuhqeiujmJYgJs/M5mUAgNzh08Ew1teBs9WoKPMgU2Jay7Ykwah0dp0fwDVUXLiwRFLhyTap42l0Rgp9UZIQVg2T4nxiqGRSTNvOqB+TmJYeK/LwJom44mWmNTMqwrafAVEAW1gJtjjW7UO3WZRkSqOiL05KVl/VbRHDqOj9jcdq0JlpGYZJWy4Vottpb5Iww1v+6vchbFkGsDz8cy4F48tt17GtXA2caqiIu37tUKaR3NtWRURJO6OmCDYljFjfng4hliNtEHeuAgDkDrMXHNtFi5mFuh3p+nEZFRcu9mEYEo05ZVTiZqYlPvo0NM4hgmGdPSkpSL/rxy48mUsxQoA3hSfT46qJO23EtGTolTwqxoRvgppYjB8w2TaRFkcxXpK28DO6sSPqGpV4Atr4RQmNfSCGSnt1KoKWgKx9kRmkXz24OvBrPgUA+A86G3z3oe06LmAtJucqBgGcB3JbA6SG3e0+h1M40ahY6a1oVsUQFbXtZ03/5C2zNoQBs5g2VqOSqagfK3AWdbXMIIZKvmuouHCRnaBr4jit9RPvjZbRFtKOs1SI28frYZGj5lIIhTOZ8I24ftITnky7cMxRCvpiw2rbkH1Is1gWStXj7b8AgCFLqBkGRsXCQBJEyTYjKW9D6cf0z9QHNkBClBts93GCqGZAtdP1o+4/wbtF+dxvYkxivFRhFWXC8F5wlUoIb0fqVMyh7TQIyxK1yLJM61QMhsomRf/ktXErasemU+hb5FFp7UBGxXX9uHDRBWBkVBJtm4TrpwMNFRLxk+PjNT94JlPokwUz5fBkzhSeTLlwiPFjzkxLzmUIT5b0/YQdKwExCia/HGxpH9tzW2lUWJYx6GYEG4PAKuOoFWhWTZJlMGpkSLtdP2J6NCrKAiljnHercryBU9p1PBp2eYRI4j1xV8cZKlodH4trRQzfcDR2GwOjon4vC2EI2xX9kyeRoWKX8E09LhmZdGemtYIT10+r6/px4SK7QVfwdS6mza7wZMKoBHw8VU4+PqPS1BrBfa/+iO9X70l4/Jjw5PZWTyZFCS2yz9oxKuQN2JCZVtYNDZHkTuk7Pm79FCtGhaUYFZF2/cSL+nHg+iHtJIaK1Fpvu48TCA6q+ToBz7HowdWjnGsGOI+SQTZNsK3WSwS1u36F3EE3RzzXj6ZRIXoras74LRgVYftKQIyAySsFV9Y37nmNCd/o4/Km7TIf9eOEUWl2DRUXLrIbSTEqWRqeTOr85PhpQyU+o/Lzhr1Ys60BX/+cWDNgV4envXlUzOHJLJVcy16joufpIOsdC+hJ3vqOi3tufX9jP8gbtSBJiArK9/FdP/Z9p8NhDWn022moRB0UxXQCnmN1NqX3aDDeQLuOR8NOTM6W9QM8fiAShNTYMToVZxqV2Ag2o0ZFjULb9hMAgO83IWEhQTtGJSb0uR35cJzCnIDPCi6j4sJFlkOgbuDEjEriooSdEZ7cFlYeNAEfj4Dm+onPqDS0hAHEf4AR2HUl5aKEWmZaC0ZFM2LMQlsWsiwjf8XrODnnf5BkWTOgKuVqyMEmwOMHVzkk7rlpd5VARS9pGhVB1sOT4zAqTlw/Sj/S5/oR25lHRWquQWT1FyhiWnVDpZ3hyGbYuRoYlgWrJuCTaren9Zx2iO/6MYre44lpZVlW6kcB4PuMTXheOzGtP0GOlkyAS/A8kiRZe9HJBkPFrfXjwoUFjJlpE2ybpa4fEvWT4+Ph9zlz/TS0KrkcnBhUduxQe8OTiZFo0IoQI0bLo6IbE1L9Lvi3/g/T/MD34Qla2/tLWwAAfK9RYLj4jzp6QdLDzVmjRsUihb75sxMxLaCML5sm1097xbShRc9C3PUrTgcDlpMhyCz4PuPa1SYz6KgsM7iS3pCqNkCq3Qa0o56QU5jdhoa22NSAAmLFtFLtNsjBRoD3gnMQGZVITEsfO9NIpFEJR0VNM2NuX2fAZVRcuLAAnZk2Ue4TIU5eBgK9enJHun4URiXH73Espm1sUQ2VzmBUbBK+cSwD1sYtxLEMxB2/aMeoYGq1tvcVtyjHdfC2SxtXtD6Bp1w/duHJhkReCVLoky3pej+IhiBHggnbaIf2iGnlSBvE3euU9qlL0wa5V1rdPkB8TQRb2hsAINZ1DKNirrxNw/wdG4dR0dyKPUeC4RKzDnbRYeZkch0hpk2kUYlSGr2OMJwSwWVUXLiwQFJ5VOJQyQRMZ0T9qIxKwMcZxLSyLNv60xtV148TQ8WuL/FcYPFgJ5ilw5OtNCrC9pXaMSqZOkiyjEKmDeVSNQAGnANRKL1ARakEfrTrR7Bx/dilRrcCyzKKYFeUwOQGFH1GNASptQFAWcJ2WoEYyqm4DISdvwKyCKawAu8zhwK7VmKTfwTS6/iJX1uGU6OxOsz1EyeTtNlQoeeygVHhWC3s3cn8Ivvof8cR02ZBrR+dPWQSam86Ap1vKrlwkYUw5lGJv20yCd86Q6OSQ0X9yLIenWOFhhbnrh87W6a94clCTD0fndnQcqyo7fPIUYi712rHUBgVYIR3h9KWbv3BqgUA48GSUWGNLI+di4UzuH7i991scKXD/RMVrJkeJxBJaYFeo9Dk747/hMagjStIuS12iOdqYIt7AlC0OlKwKe3npiHLsiMxrfaZpQ0K3VDJYUOQqjcCAPg+zgwVet5wcV0/HRf1Y+f6sdNjdRayoxUuXGQZDIwKEjAqjjQq6rE6MjyZyqPi83Ca28HO/SPLMhpbCaOS+Ph2TFOq0Sd6UUKjYJYumKexLeo2BS2bAUmArPauO6swKkM9SgSJ0xBbltHdMlGDmJZy/ahRP2ZDxePQ9QNQkU0ke24aDBW7/C6JIMuykmcGSpQPcV1mYnGio7LMYLwBMAXdAABS3Y60n5sGfV9bGdRxNSqUi6YiuAWQZbDFvcDmlTo6d6LMtFa/ZQo6o2J9o0dt9FidhexohQsXWQZDrZ8EizZZNPk4Lg+7hFeZRJDkUfHzYBhGeyDaCWpbQ4LGZjjR0thqVFJNoW9mTSwz0xqNmPyG9cq2vcYDAErYFjDRNgzhVUOl50jH5zfn0OAYPdooEpV0Foe3Z1QSun5IWKg6zkwaQpQFB5mRrSA37oHcvBdgeXDdh2tGViaiThK9wXMlik5Fqt2W9nMDynym2RS6TYZ2ONSolLcp884pmwIAPG+tUekMMW2i62Hn5uwsZEcrXLjIMqS91k8naFRIwrccnyL0Iw/EoA2jQkKTAafhyWlmVGxDkGMz0wqaoaIIQaW+k1Ev5gAASmp+RC4bQYTxgu3W3/n5iaFCZdglizZt3JldLMZicwkYlTS7fmTZPhFdIhA2hes+BIzHp7U9I4xKAk0EyRosZkCnIkoS7nppGR5842fDC4iVqyxGo2JRPJCHiNImZd5xfcc7boddUUJvJ4hpExVJtSsX0VnIjla4cJFlMET9JFizBUeuH2N+ho4A7foBlHwqgH29HxLxAzgNT7b+PhWNiizL4KCMuaZRUU/gY6LwQdHb0GxLKdsMb3AvwHBAxTDsFEsAABVV/wMAVHl6g2GdxwvEMCosqxlIobBu3MUyKtZvylYwG1xMTvsMFdqgTLYoIUn9zvcape6vtC0TdH8iQ51E/kh16WdUquuD2LirCas21xncnlai7/gaFWUuDfPsBC+FweSWgKsY6Lgddvl2WIaxLXiYKWiMis310Fw/LqPiwkX2wphHJVHUj558zA5aUUIHTEU60BYStGqsAbUgYaI0+jSj0r6on+QNldB/HkPuhzegH19jMEa8iOKMyCs4ovYFeCAYon6GqDoUrmIgWH8OdorKou+LNAAA9vj6JtUGK9qfvPkSdophYq+zUXsQv+/mjKDt1aiQBcXcjkSQxSjEXWsAAFyv0cr+fAY1KolcP8RQqd8FWUxfPSoAqKrXQ7/JPcHATqMSJ+pHzRg7nkqKxzDOxypeqQVjev7Mi2kTRv20M4lgupEdrXDhIstAP1CdZ6ZNHPXTUXlU3lq0EeGoiG5FAVSWKDkxEuVSoQ0VJ+0k4xITBZNkeLIcboWw5Ucw4RZcmP8ZeqJKOb4kY6CnGrlyK/KFeuzn20DlUZEwmFfqEXE9hoNlGOwSig3Hrfb1S6od5jBMOtpo655mAEB5YWx+EbtoDivEun6KlM8pGip0dFoyhopYs1mpUePP1zLD8hlkVBLl7WDyygBPAJDEtKfSr6YMFVIR2I79NBsvZo2KBwJGeRX3lCfJ7L12Cd8A+8rMmULCqB/B1ai4cJH1oF0/jmv9xKHe9Twq7W9bIqzb3oAvl+8EAJxxxDDNcEjEqNCun2RS6JtZhGRdP0rCMeVgfiaK83L/A6F2B0RJxiBeL444y78Kkvq2LYoSBnkUg4brMQwsy2iuHwBokAJo5p1FYxBYMyrK2G3arYTNDugRG7pLWBeOZQxF7CzPQXQ46vwirh+5rRFyCiFhxE3GMkxS4y7u+lVpT49h2twkLsIcf/rTayXSRDAMo7MqadapVNW3aX83B5U5bmdMx7BlJtfPcM8u+BkBUV8R2G7O3T5A/JpQVgUPM4lEjEqXivqZP38+TjvtNMN3N910E4YOHWr4N2vWLO13SZIwb948HHDAARg3bhzOPfdcbN/eMYl+XLhwCkE03sDxGAay6MS7qbUU4hm2VARRwgsfK5T+AWO6Y3hfnWVI6PpppTUqic8l2zAq8TL0WrZ5t9JeDJiKTdFyBNgoIis+gSTJmjECAKVcK0rqlCRbRXI9CtkgZJYH120gWAbYK+UhLCuL7Lpody2brVNYvU3zJt1KfwtDRdN2OFhgzAsEk1MIgAEkEWJrY1LtBeistEkah8Tt032Y9t3UkZU4dno/HL5fn6TbkQhO8ghpNX/SHKJMMyqtQcXQtWM/zS8bLMtAjgTR9tGDKPz2YRyVsxwA0FYxNulEaPFE135Ko9KRmWm7fB6VV155BQ8//HDM92vXrsUFF1yAb775Rvv35ptvar8/8cQTePXVV3H77bfj9ddfhyRJOOeccxCJRGKO5cJFZ0GMMVTst9XEtFmQ8G1nTSt217bB7+Xw+1mDDL8lcv00JqlRIV0xP3STZlQ0rcQYfBgcp3y3ZRkQbkFvrhYAsLVwEgCgd83XkGUJvaVdAIBocT8wvBcMw0AGi+2CwqqsifZIyG6YEatPYGKMDytGhbh7nPjzObNGheXABJRjis3Ju39S0RLIYhRi1QalPT2Ga9/nBTw4/oABqCjOSbodiZBIowLohopYvzOt566mGJVErh+rORD99b8Qt/8CrnYjKjnFmIz0cB7tQ5Dr98DLsyjI8cScx0dlp+0IAavTzLTZolFJmuOrqqrCLbfcgsWLF6Nfv36G32RZxoYNG3DeeeehvLw8Zt9IJIJnn30Wf/nLXzBz5kwAwEMPPYQDDjgAn376KY4++uiUOuHCRbohmpKnSLIMFtYPN11MG8f1g46J+iFvQgU5XuT6jfVHknH9OMujQhgV+0iJhMcItWi5Mzw9h2GD0IYmyY+CSBsqdnwGjpHRxBZiQ7dZ6Fb/M3LDeyGs+xZ9oSxmQplSFZk8eN9onYpjB0fxY10ZDkzSYIphVBhj3ziWQZ9u+TH7kWgbJ5lhrRZsJrcYcrARQnMt4K9Iqs2pUPRi9SZAjIIJFIAt6p7U+VJFooUR0DPUppNREUQJextD2ucWVUxrZ0zHGCqQEFn5HwAAM2wWPl5egwYpF7PKBiTdFp+Xww2nTYSHZ2PYGNr10yHhyQkZFeucQZ2FpFuxatUqeDwevPfeexg7dqzht23btqGtrQ0DBlhfxDVr1qC1tRXTpk3TvisoKMCIESPwww8/JNsUFy4yBvMNHN/1QzQqcVw/6k+ZZlREKgeIGX6fPaMiy7Ix6ieJFPqxYlrnBoKwR9GnsEXdwecVQwaLnyJKtE5Z1WIAQJW3N2RvDj4NKdEpoe9fR39WYVSkctVQUR/8VVIRNuePh4zEehEzLDUqlGahT0We5YObS0KESt7k6QWb5FIRm+uSai+QWrI3cbfu9umoOi6cA0aRUxkVuaW2XUUaaextDBleDohGxc49adaosDuWQ26tAxMogH/qH/BhcDz+Fx6S8gLepyIf3UtzY77PBjEtYZsAICooLzPZEp6cNKMya9Ysg+aExrp1ShKcl156CV999RVYlsWBBx6IK664Avn5+dizRxHGde9utOK7deum/ZYq0j2g5OGTSMW/L8Ptoz3MD1SWY23nGGFffB7Odpt4oYntgbl/ZOHhuFi3Ra4qkgxFpZjf2kICIlSoqyjJCdtJjDfzg9XrtR8HMyJ7lDo9fM/h8Hg4cCyD5ZF+ONC/FowqsK3x9QHHMvhvaAQOLt6JgnAVchkgInPgKgaA51nQUaLk2Ws1BvFgNlS8Hg5eagEZ2LPQ8ngkB4aHt58jBMTwkRl9HnB5xRAACC11yWeXhX4NnPY1qBoq3l7DO2whIv2S5Tjzn89X2KXWejBNu8BXDm73eWk2BVCyLwPK/WLVDuNclsGs+QwyAN+o2fDnBODhWUQFCX5f7Bxvz/OUCJlZhjG4gTIFkmROkpX7/Msfd+C5D9fgguNHYf9RlZoB4zU90zprzUjriKxbtw4sy6Jbt2546qmnsG3bNtx3331Yv349XnjhBQSDipXs9XoN+/l8PjQ2Ji8kI2BZBsXFsVZqOlBQkN5y59kIt4+x4Ey5DAoLc7SEaWaQt+OSklwUF1mfx6+6YXx+T0bmKulfoLoVgPKAMZ+nSA2tZZjY+6WlqtnwWZaRsJ3kYeU3jUtpSR5yA4nL3gNAa5XyclM0ZBzyinPB8yw2R7ppCxYANOT1Rx7LQAKLtT2Pw+RN/wAgY7NQjrFlhSguzjUwXqRdOQFvUmPt9Rj7UVKSi/w8v/Z5zJBulscrVMfV7+MTns9Hku/RbSurQBhAdO9OlCQ5T/01yvX2eWOvtxUkIYKGKqWYXsnwCfBm6LlpRn5eq/pX/Gd1qKIvgpvq4QvVoKB4XLvP2xwyvgCTiuJW9wcA5OX5tL/78zWQ924Gw3lQMf1ocLm5OGL/fthR1YKhA8ptmcNUnqfk3vR52YytZTSa1XEg9/meBsWgq24Iobg4F7x6L+Tn+izb09FrRloNlQsvvBB/+tOfUFysUJlDhgxBeXk5fv/732PFihXw+5WbPhKJaH8DQDgcRiCQesclSUZTU1viDZMAx7EoKAigqSmo0eldDW4f7RGkaFAAqK9vRcjCUFFSmCuLZEtzEJxNiGlUdbe0tUVQX99quU0qMPevqUmlzGXEnCccUvoUDEVjftu2qwEAEPBxCIZFSJKcsJ2EHmZMbH5zUxCRUGJxvBRqRaRqi9K2wn6I1reCYxnIYBDtOQH8us9RI+ajlclDkWp87EEZfOMOR/inj/BLpA8GNYdQr7pTGKXbaFPp/UhESGqsze695qYgohF9HlQW+S2PJ0aVa8uzTMLzkSJwTc0hbVuhbCgAoHXtYtRt2QimsNJxmxsalevNMLHX2wrRXWshCxEwgUK0sEVg0jgX4yGkzoeoIMZtp5TfHcBPaN6+EWK//dt93s07GwAo+iFBlNHQrCzIDKzHKxLWr/c4NbGbZ9B+aIrwQKQVJx2oyBqaGmPXm/Y8T2WqsGQ6nw92aGlRxkEQJdTXt6JVjfhralHmZbP6u2S6XuleMwoKAo7YmbQaKizLakYKweDBCn23Z88ezeVTXV2NPn30ELjq6moMHTq0XecWhMwstKIoZezY2QK3j7EwbxuJipYKeDrhliwnnoeCkJmxJv2LRBXjgWVi20Le/6IWbahTKfLifD+C4VZIkpywnXTRQBqynHhfABB2KfoUprACkrcAkiBpb6lt/Q4Au201Pq/tCx66W0YQZXgm/x63LPKiWizA76gxZ1kGoiQbsrUmM9bmF2RZ0scs18+jNN9nebwhvQpx6KTeGDeoNOH5iG4mEhX1bUv7wdN/AqKbf0Tr92/Cf8hFjttMyiHwLOuor5FdiquNqxysisA7qKaDTBL1xZ8bTFEPAIBQuyMt98meWsWg6Fmeh617mtGsvoCwDGN5fIYSzPfja5Rte4xIqi2pPE+JgNbDO7uO7QWxycn1iKgvHaGIMi/DUf2esmpPR68ZaXU0XXPNNTjzzDMN361YodSTGDRoEIYNG4a8vDwsXrxY+72pqQmrV6/G5MnJZflz4SKTEExvC3YaQFqMFi/qo6OKEtoZDwBVndjiTahBjfgpyVeobxmJ20q6btaoOA1P1kJkK3QtAmmj4C/F0kHn47vwEKV6MtV2GUCVWAgZjCHMlOhz6CRoycDcbo5lUJCruKmH9C6yFZ56eA5/nD0Yw/uVWP5uOIdN4rPAlBMBMIhuXAJx7xbHbdbyqDjMGSOpbh+uYlCCLdMLJ1E/AMCSKsppivwhyd76VyrRWlodpwThyR4IWmg8PT8zBRL101HhwJxpHhKjg7zoaOHJWSKmTWsrDjvsMHz33Xd47LHHsG3bNixatAg33HADjj76aAwcOBBerxennnoqHnjgAXz++edYs2YNrrjiClRWVmLOnDnpbIoLF+2COerHbtGm863ESx3fUXlU4lVy1rOixraBRPwU5+s++kSLCnGV0OdiGOcGgm6o6IumxpxIknZ+jmUMKdjpdtHnJsMvaJFPjpqh729qN8syGDOwFBccNxKnzmkf40tgFfUDKLVu8kYdAAAIL33b8fGSqZwsy7LlmHcEHBsqxd0BMJBDzZCCTe06Jx2a3LfSGFaeKOFbb74WHCODySkCk1/WrnY4AS3I7giYrwcx7iMqkxKlXFHZgLS6fg455BA8/PDDePrpp/GPf/wD+fn5OOaYY/DnP/9Z2+ayyy6DIAi46aabEAqFMHnyZDzzzDPweJyJ71y46AjEhifbbaezE/FT6Mc/TrogOmBUzFl3AT00sTBPF7onyqVCum6odeOQTZElUcnnAZOhojEnsoEdoqsOG41DylAxJVNLB6PCsgymDE8ut0k86IZY7NgWTj0OLSu/grjrV8iy7Ch0OJpEwje5qQpyqBngeLBlyRVsbC+cMooM7wNT0A1yUxWkuh1ge45I+Zy1amiy18PGhATbzVMyB/qrbh+uYlCHhHD3LM8FA6BHWceIm+nwZFmWtXlEdGfZVuunXYbKPffcE/PdEUccgSOOOMJ2H47jcPXVV+Pqq69uz6lduMgozO4RuzdBLcNoAiYhUa2TdCGe64dmK8wgSeDoJHEWmxlAQmNpQ8Wp20eq2wEIYcATAFvcQ/ue5LcQRUlb1GhGRZRko3FI0SaaoUIYlXbmUcnE+hSPWfCUqGkbhAgQaQN8iRctQXNlJF5QNDalrD8YrmNfDBOlbDdsW9ILgmqooB2GCqma3K0oRwv/Nbcn5tzq1/35auVzBzFP3Utz8cDF05Gf0zHXhb5PZVm/Z8LqfHKrJ7twsQ/AacI3PStt/Fupw10/FqtsPEaFJIGjH+iJ2mpVlNBp5WTdBTEQDJUEhbBSgiRT7BCraTBE6nt6e2U7o0aFaUdmWpZhMvImHa+KMOvxgfHnKb+3OEv+RvrqcaBREfcoY852sNsHSG7+syUkQ237asC1qixhQa4nJrWA2bCTZRltH9yLoSseRYAJGxiVjkJxvq/DXC20oSZKOqNCNCpaxuMka0hlCq6h4sKFBczUfCLXTzy3D6ALPTPt+tF0HRYPPE2jYiGmJfklcihGJdHbr1VRQqeuHzutBG/h+lFcMMr3EmWoMDCyJuTU5JokaaeY9C6ZeUDHc/0AAJunCHLlVqeGinMtgTbmlZ1oqDhgVIhbKhlRsRXosYkxVMyRao17IO76FYG2PTgn70vksWFEZa7DXWQdBXp+KxF+ynUhBoruUuRid+4EuIaKCxcWiC1KaFO8i6QwT7CwadWT02Sp/LRhL5b8WhXzfVyNCssatqGhMyr6g8lp1E86DRU9DFmitCZ6VIsgSTqLZTIOGROjkqyxQW+fTBmA5M6hG1yWv+cqhopzRsWZmFYOt0JSi/1x3TrBUEnC9cmV9Ve2rdsJWQgn2NoetKHi93GGSl3m60vmIwAM8ihun10o63AXWUfBzKgINoyKx2VUXLjIXlgVJbTezj7KhgZ5UMtp0KjIsoyn3l2Jp99bjWDYWLdHitMeza1iwagQjYrfx+vC3xQYFSfGgdTWALm5BgADrttAw2+ae4qK+mFNUT8ai2Wuy8IY+9cejUqmGRU7tipZRsWpmFYRLstgCrqBzSl02Nr0IRmNCpNbrFSUliVItam7f/Q6SErdJz9lhJsZR3HPemUfrx4dtFN2nnhvX4OBUaHEtCR/SrZVT86OVrhwkWWIZVRstpOciRnJ2346GBVRkhGJKmLTsKkScryIl/gaFdVQ8XJUhEb8dhBDwlxhOGH71VwebElPMF5jRmptQRNlgxFIRwPZGYe6mLb9UT+ZYlTiaVQAgFENFcmp60eINRatoDFYJsOwo5BMHiGGYcCWK6yKWLM55XOaBaF+qoaOHaNSO/QEbBGUcORNbB90VbCMntpOiaQjUT8m1w+fHa6fzFc/cuFiH4RjRkV0yqiQ47S/bfQiZ35D1dkGK9cPY9iGQJZlzfXj9/JahlfzdmaQIUnW9SPVqGHJFosmT4UhkzFnWVY3YGTZ1r2l5VEhGpUkjQ1agJwpRoW1uQba73mlAKDVOUoEpwnfyILfaYZKEhoVAODK+0Pc9nNaDBWt9pOPR32z4kqi56kcaoHUoFTjjpYOxGNNc9CNa4Rc3Cvlc+8LIPe5JMmIanlURCVc2RXTunCR/XAuprUXr9JIp+uHNk7MD/644ckUK0EjIkha/5JhVFINTxZrtijbqm/NhjbS4ckUc0KLbG01KqbMtMkG7XQko2Lv+ikGkIJGJc78k2UZkipM5cr7OWxpeqEbKs6259S5IalzJRVEtYgoZWxoQS19v4rVCpvCFFaC8eUjCh47xdKMzYFsAUcZzcTVI0OZU1HX9ePCRfbDvJjbMyrqQpHgocYkQX0nAi3sFWUzo2K9iNPf0WwFoLt9AKUKL1lUEmtUlP+Nrp8Eok5Z1qI5OCtDhdONDdroot/ISR/NY57OPCrJ7pvsOWzFtBqjUpcw4R7g0FBprYMcbAIYFmxp57gztH7LsqN+ESNWatgNORJM6Zw6o6Kc22Co0GLSPXopB6tw964K+p6idWsRQdLdZlmS8C07WuHCRZbBeWZah64f7UGd3rbZpfq3zKNCGRG0IRYKE7ePwqY4jVAiv9MRJ4nGQW6uAcKtSnbU4p6xbaTEtKKBUdHf/nSmxbrGUKpRP0wHMCpsIkYlV2FUIESUcUoAjTWIs6BoDFZJTzC813a7TIKejo5yqQQKwOSVApAh7t2a0jnNi22AFtPShkqVIqTlKgcZ5lSil499HTS7F6UNlajOqGRLCv3saIULF1kGKx2HFYQ4DAYNPYV++y0VKY7rJ34KfTokUe8fLaSl901Y60djNmITttlBXzT7gOFiJXJeteZJJGqu9UOl0LfRoJCPZIFKlhTpCI1KItcPw3vB+JXIE8mBTkUQEmtUJKJPKYtlsDoKtAHg2P1T1k/Zfm9qOhXBpB/LsWBUZEmAWK2OT8WgDon8yhaQ/kUp1y+gpCog89NlVFy4yGI4jvoh9HKizLRpTKFvZFSMT/144l767YiO/KGFtHRbE4WSanlUeOcPd03UaaOV8KuGCv2wZBjG4LayMw7TWesncxqV+HlUAIDJJSHKtQmP58T1Q1xtbCfpUwDjeDq9B9huauRPdaqGiplRoTUq6v1Yux0QI4AvF2xRd8Oc6uoaFTLfSSFCgjYq5YHLqLhwkaWQqcgScqMmyqOSKOoina4fQ9SPWUsTh1FhWSokkaJ6gzaMSiLyh7BDtOAuEV2uiTrVt2UzSBtCEdGy1o9EFSWMqc0TEwWUukYlU4XoErl+ACWPCABILQ4YlQSGiizLlHHYeYwKVSXBsU6LMECpZqgVTC8RRo2KytBRY8MwrGEOdHVDhfQvHDWmOGgN6oaKy6i4cJGloBcRkpkxbeHJ6WBUqLbEuH7k+O3hLHKp6IyKaqg4FP5ahSfHMw5kWYob8UO3IRwRja4fOmzZTqNiMi6yk1FJbKgkk/RNT2pmY6g071W0LiwPtqTzwm3NmVCdgC1ThL9yU3VKglrBpN+xEtNKqv6FGM4GQyVL2IRMgdwfZkOlLaTUSGKY7DHWuvaVcOEiBRgMFfVhZbdmC04Tvmm1ftKrUYkR08ZhVAAYRKkEukZFdf2wseexglV4cjwXmNxUDUSDAOcxVEym4aMYFVpvY1U9OSbhm+nU7WFUMq1RceL6cZL0TU/MZd1eUdV3sKW9OzUdPG00OmVUWH8+mJwiZZ+6HUmf06zfybFw/RChLqnpY1WNu6vCllEJKS8uHo7NGLOYLFxDxYULE2h3Colosa2enGQK/XRH/diJae3aY5WdNhQm6fOTY1T0Wj/OmAiNTSnrC4a1znhJjKVQRLDJoyLZ9jGWUYnb/Bh0TK0fdYG0KGOgbaMxKu13/ZA8JHauto4CQ0eTJXETkHBqMYVKyuQlgoyNIYU+y0KWBM0A4oihQs9lBxWp92WQl6tYQ0VhVLLF7QO4hooLFzGg2QZNo2LzcHXs+iEsRQcxKnbMBl30jyBGTJts1I9D14+mB4izaBoYFTmWUZFk+4Rv7XX9dGitnzjzQNeoOHD9JAgjJWPemUJagmSz0wIAV9pb2SeFmj/msTFH/Uj1uwBJALwBMPnlhjaSbboyyP0RiZhdP8rzIFuEtIBrqLhwEQMt2gRUGGOiPCpOM9OmqdYPgdnwce76oTUqyoMqYNaoOI36cZhCX9cD9LXdJkCLaRPW+rHOo0JgFtcmQjbU+gGSS/oWLzGXLMsQa7cp540z5h2FRJWjLfcpUQyVlBgVqighEBv1Q+tTiIuD/w0ZKprrRzCyey6j4sLFPgD6jT2RgRGvtg4NJo3hyfEYFSGB68cqjX6MmNZhhJJePTnxw12WZW2xiZcdlbA64WgKGhXTqZNmVDqy1o9FYUgCostwkvQtGofRk1vrlf0ZFmyRtSaoI8GlwCqyFKMiyw4TsKgwu8UMhgrD6GHb1Hw0aFS6uKGihydbR/24hooLF1kMfSHUxWR2j0itJkaCm7rDMtMmZFSIRiWOmDbZqB8HmWnl1jp10eRshbQA7frRNSqsKY+KnUYlNjw5bvNj0KFRP/FcP7wXTKAAACA1Vcc9nhiHUZHqFDaFLereaRlpabBU0j7H+xRWAhwPCGElgikJxDVUOEYT0tJsE5dEOYh9HRqjEuP6URgV1/XjwkUWg86NQtYru7o3ThJuAXCclt4J4mWmlRIxKkSjEjczrfJ9ogXFKo+KnYEkETalqHvc6BO/neuHWjSIcZhujQrd9szV+nHm/iBRKKJaadoO0TjzT6wlDFbvpNuZCaQiKGdYTiu1QNxYThHr+qHEtIyue2EpzdRvSqNiF/UTdhkVFy6yHnTqbSbBw9Upo5LO8GT6bdxsTCSO+iFiWjrqR3X9+IyMSryihLJMgpON+hw7rY7TRdOnZqaVZd0lxbKMwb0UEexcP+kzVDIf9RN/HnDlA5TtquMbKoJgn0dFW4hLOqcQoRlaNtgkaUXS/mQFtdpLhHpvciyrza9AuBYQwgDvVVgbci6G0UovdHVDxS48uY0KT84WZE9LXLjIEohUbpRENXrIQpHoptYFqu1vnzEzrWT6zboODoG1RsXIqDCamyqeoUIdk6Ue7jbGgb5oJjBUvPpbL8nnwLGMoT9RQWlvTK2f9mampdqerBDX8TkcJHwDAK7bQGW7OIaKRFXBtnT9ECFttjEqSRoqXKmSqE5KUlCrGSoUG0dYlUDbLqVNpX3AmFw8hPX67WhUTGLaoOr6cRkVFy6yF3TIcaJ08lFRWTQT3dTpDE9uVx4VbaG0d/1wDih6uh90Bktb14/DRZNlGEOIMjkmzRiQB2tsZtrYYyWDDo36STAPuG4KoyI37oEcarHchq54ay7hIAthSE1VALLH9aMxKkneA1oulaQZFZVt4mlDRWEN/S2KocKVxkZDkXZ2+TwqNowKYSxdRsWFiywGvdiTtc7u4Rp1eFM7cac4Rbyon0QF+TgLMW0whTwq9HAw0DUkVg/3ZBdNUphQazMV9QNQrh+zRiVGXJvwVDHn0Y7VibV+AIDx54EpqFC2tdGpCAZDxdhZqW4nIMtg/PlgAoXtaXLakDKjorJwcnONrdFmBV0/pl/L/YZXoKIkB0XRGqVNFvORGOpd3fWj5VExGSoELqPiwkUWQ6uITKWQtnP9REV76p1GIq1LMjCIaW3yqCRiVAQL14+eRyX2PGbQ48Gy+gJsdd5kF02/12iosKpWiDxYo+qDdV/UqGiunziZabVtu8XXqdDX0NxeOhQ8W9KgO3V7mcH487RIsfCP7zreT8sxQxlxx87oj7vPmwqmSWVULOofaYzKbyXqx8ZQcRkVFy6yGDSjQm4Q21o/TsOTE2hdUmmf+W/6c6LwZLKdKEkaK0TEtMlqVBhGZzysFvhkF02fhaFCH9tOTGs+dlZmpk3C/ZHQUKEyr5r7Tlxt2eL2AUC5UZO/B3xT/wgAiK76LKHAmJxDE8WbFlw53KqVJyARRTQSuTG7CsxRP+b7xY36ceEiiyEYXD/xFxYi7Ezo+nGoTXCCdoUna1E/yiIXonIoxGhU4rz50v1gE2hUkl00iQtKazMxVNS21zeHAegRQlo72lmUsEOifhjnrAIR1ErVmywXdyFOQUIiXuYSiJc7EqkyKgDA9x4NftA0QJYR+vp5yJI1C0BgLCxqYpvqdwIAmLxSMN6ARTuVicR3cUNFZ1SUeZTjN953LqPiwkUWQ9TyL7AJDYyohWDPCunMTBuXUZET5VExRv2QgoQ8pwtWnRhVskFMyyRw/aiF3xwumjGuH8ZoBG3c2QgAGN632HI7/bOj02no0Fo/CcKTAdWwY3nI4Ral8rQJdjlUnGYB7mjQ8yoSFfHE2yvw7Yrdjvf3Tfsj4MuFVLsNwsbFcbeNCvH0O8p8tGJTgN8uo0LXQgJcRsWFi6wGnaJdD0+23jZpMW06NCpyYkYlUa0fnVExCmnptsZnVPS/6agfs19flkSIe5NlVGLFtPT/MoD8HA8G9yoybNfe8OQO0agkKHJJg+E8YMvUiJfqjTG/2yUblGq3ApGgkiOkqHt7m5w20HWONuxsxNK1Nfjgu62O92cDBfAMmQHAejxo0Aa8naFipU8BaI3Kb8NQIUUJzYwKb8HUdRZcQ8WFCxPoWj8JxbROE751UPVku4J9BGaNijk0WWlrYuGvmVGxewsVqzcB0SDgywVbbL0wmGElpgWMC8f4wWWxUT5M/M+J0KG1fhzOA1JpWlLdFTT0ZG/Gtgqblynf9x4DhuNj9uss6NFkus6oqTWc1DG4UmfJ38h9yTJMzLUkY5mIUenqhgpt+ANAruv6ceFi34FgqPWjfGcrprUIgbSC0/o5ThDX9SPGZ1TsNCq0ceAs6kf/W6nFQ7J/mgyV7b8AAPieI2MSa9nBVqNC7T9hSLeY/WLzqDg6nb59RzAqRKPiwPUDQGNEpIY9Mb/ZMSqaodJ/YsrtzAQ4qtYPiXoKhkVN5+UEdE6VeKJc0ea+VNxiquvHjlHRQu279vJofkYE/MbSFh7e+MLQmejaV8KFixRgiPpJ4AbRGZX4N3VaXT8GQ8WUmTaBRoU3aVSC4VjXj5OkZGSRIIYc6Z/5vMI21VDpM9b2WGbEimSNxw74uBh9Ct0Gu8+JQD+4MxXSm2waeZLeXWqI1XJYhd+K9bsgNewCWC6pMe8I0FE/dGh1Y2vE+TGKugMsD0SDcYsU2up3go1qcUzG1i1G2pmpXDrZAnMWaTOjkujlqyPRLkNl/vz5OO200wzfffHFFzjxxBMxfvx4zJo1C/feey9CoZD2+7JlyzB06NCYf4sXxxdHuXDRUaBdP5qBYbNtNE71WhqMA5bCcfscZKZNmlHx0YxKYkOFnFYzUCz8+lJbg6KXAMD1GhWvSwbQbQGohUP9f+zAMsvx3hc0KrSg1EmYLlukGipNVTGRLlFTLRsAELYobArXcyQYb05a2pwu0FE/dLK6ZAwVhuO1nCpinX2RQlG0dotpQtqCCtuK0r81jQpBTNRPFolpU3ZgvvLKK3j44YcxadIk7bulS5fikksuwWWXXYbDDz8cW7duxc0334yGhgbcfffdAIC1a9eiT58+ePXVVw3HKyzMjuyJLlzQjAoxBOwWbT2XRQLXTzrDk+MUJUyY8C1GoxLLqGgaFQcJ38wF3OiHn7h9hfJdeX+wOc7vb6vMtICe/nzCkHLL/cxvwElrVDow6gdQrkGiecPklQKcBxCjkJv3gims0H4TqOg07bssdfsAxozHtKHSlIShAiiibKl2m6JT6WfdTysjDqAMFRu3D6BHvwR82aPvyQTMz4hsjvpJ+kpUVVXhlltuweLFi9GvXz/Db6+//jr2228/XHDBBQCAfv364YorrsBNN92EW2+9FV6vF+vWrcOgQYNQXm79sHHhorMhUhoVgVEWA/taP04TviVH+cdvX2JGJXH15HgaFSdRP8RQMb590mntBaJP6T06bn/MMGtUyAJ3ypwhWLutHhOGWj87zCnzk2ZUKMMm03lUAHV8E8gAGIYFW1gJqW47pMbdYGlDRYs4U69X815Ie7cADAO+7/i0t729oI31VF0/gCKoFfBtXEGtVUFCABDr4gtpAeCEAwdgcK9CjOxfklS79jXEMCo+s+tnHzZUVq1aBY/Hg/feew+PP/44du7U1ehnn302WHOhMJZFNBpFS0sLSkpKsHbtWkycmH3WvgsXBAbXj0I4WC7asixTi4Uz10/6NSrJhScToSBZKCwNFUdRP8r/pF/F+T7l/zzlf1kSIexYBUCJPkkGduHJQ3oXYUD3Atv90ppHJUP6BJpBcZr4jC1SDZWGPQCVFiVKlXoAAHH3WmX7bgPBBuzHqbNg5/pJnlEhglp714+5IKEsiYiu+gzCJkViEI9R6VORjz4V+Um1aV+E2RjneRZentWLEu7LjMqsWbMwa9Ysy99GjBhh+ByNRvH8889j1KhRKClRrNP169ejuLgYJ5xwAqqqqjBkyBBcccUVGDMmuYeZGekuoKRFMWSRVZluuH20BmELlJtW2Y9hY+eYIEqadsXv5+POQa/qzpBkud1zlV7eiMGgLVYqG+T1cJbn8XpYQzsiAsmh4NG2pxdTu7bSgkOeZ3HWkcNx6OQ+GNK7EAzDQNizCYi0gfHlwtt9kOOIHwDICVhHHyS6huY3QLsxsIOXMpA8HjYjRdlo1odhGe0cHMciKoj427NLMKhXIU6dM1Tbji/uDgGA3LTH0CYyD7xqW6NNSmSQp6xPVhWUA5T+EeOPYYxGcEswmlR72W59EYRSpJCTwpbZZWV1dDw8C46V0fLBAxB2/QoA4HsMg3/gBDBpfu7ta89TsyHi8/LweDjNUPF5Y59pndXHjDnhBEHANddcg/Xr1+OVV14BAOzevRvNzc1oa2vDTTfdBI7j8PLLL+PUU0/FggULMGjQoJTOxbIMiotz09l8DQUFsTdBV4PbRyM8qushJ8cLkuAy4PfGzLG2UFT7u1tZvmaMWCGsHkcG2j1XvXRyNvWBQfpHGJWSklwUF/hj9i3I92v7FRfnQoKyeJQUBrR25QQUkaHXx9u2NSjoLqbi4lwUFwO9ehRpvzduULQAgd7DUFKa3Ntpt2b9DZtlGRQW5hj6aIfcHKM4sqQkFzmmkMt4CFFa1fxcX0aeKbSANj8/gCKViQKAzbsasWlXE2qbQrj0DxO07/le/RFaBrAt1YY2afM0oMzNcKuSvTavR18UZuh52B4Qt6DP70WYGuu2iJjkWOeiJb8UYnMtciI1EPIHwuvhDPef39+k/O/l4a9bj4Zdv4Lx+FE6+wzkj58NJtnS2klgX3me5ub6DJ+LCgMIeDm0BpXnWklxju116eg+ZsRQaWlpwZ///GcsWbIEjz32mMaWdO/eHT/88AMCgQA8HuUBMnr0aKxevRovvfQSbr311pTOJ0kympra0tZ+QLEYCwoCaGoKOqp0ui/C7aM1WtuUhVKIilql3ta2MOrrWw3b0ZR1c3PQ1l0gi1G0LP4A5ayMBrEo5jjJgrQPAMJqeHFTUxBRQdTeVJubgmDE2PwU4bDyEAqGoqivb0VjsxKRJ0uS1q6IKrBta4vYtrWhUb/frLZp3bIGACAV9026v5GQ3j+OYdDUFHR0DUnfCJoagwgHnbsVWpqD2t8hdXwyAY5lIEoyautaIAvKWHMcq7kcBVE2nFvwKKHY4Zqdhu+byLUTlWsXqlaMw7CvNGNtTxU0o9LSGkJzi35d9tYHk24vW9IbYnMtqlf/iHu+Xg5/YRn+es507feGRnItZdQu/RQA4B1+EMT+09HQELQ4Yvuxrz1PI+qzgyAcihhYyXAw9v5Pdx8LCgKO2Jm0GyrV1dU499xzsXPnTjzzzDOYPHmyqWFG3ynLshg4cCCqqqradV5ByMzEEEUpY8fOFrh9NCKqFumi7Q5BkGP2D6k3Os8xkEQZkk0Qc+TXr8H+9DZOzO2Of7TOafdY0/sTX78oSloqbMCon6FBuhQVlPFoCyl98PJszPZCnDGLaGPEWG4jVCkVbpnSfkn3l9b7MKyevCvZeSpJEgTBudbErB/K1D3BqoZKNGrsD3HbSZLx2sl5ioBWDjYi2toMxqe85ZLrzbEMopEopEbF9SPnV2bl/azpo6KSdo8BQENLOOn2MiW9ga0/QVi6AH8JAFXBQkTaxoP1KowhqV+TiyCim5cr5x9yQIeMy776PGVgdAcxsL8HOrqPaeW/GhsbccYZZ6Curg6vvPJKjJHy1VdfYfz48di+XVdrC4KANWvWpOz2ceEi3aCjflhNBBtrhDhNny/tVXKJDOSrwchC3G2dwK56Mv13wvDkOFE/ek0W+zaYw5MNv0XatEWT7dbf/iA2sGqLE7Q3PLkj8qjQ5zGn0SfiWrNwm/EGwOQUKb816hlq6aRmcnMNIIkA5wWTl53RKkSmJMlol5gWAPh+EwGPHzIYiDKDCq4RbYvf1H4ni+hQcR0gi2DL+9vW9vmtwjzHPRyradiA7BLTprUld999N7Zv3477778fJSUlqKmp0f6JoogJEyaguLgY1157LVauXIm1a9fi2muvRUNDA84888x0NsWFi5RBFgye1Wv9EIHttyt24z9LFUPbLvulGaS2iJcR0YurdZToK277qP0FiX4jT2yoaG+18fKoOEj4pkf9xJ5HrNmi/JZfBtaffPSEzyJU2gnMbUk+PDn1fZMBZxP+rRkqFuNulUqfTqFPMteyRZUZ1V+0B3oKfclgqIQiosaAOD5WeT/knfEE6o95BE+3KMEd0q+fQ9izHgCZ3zKGRlYCADxDD0hDD7oWzHOc51h4qQzb2VTrJ22uH1EU8eGHHyIajeKMM86I+f3zzz9Hr1698Pzzz+OBBx7A3LlzEQ6HMXHiRLz88ssoKytLV1NcuGgXjEUJle/I2vHiJ2sRFSTsN6LCEaMiyzJEqqDcYL4KsmzNRDiFRBknBkaFWuASVU8mjApZIJKv9SMbtqUh1mwGAHDlybMpgLKgeXgWUUFKjlExZ6ZtT8K3DKZPZ6kwXRqSDaMCKKn0xV2/GlLp6yG4DGWoZE+1ZDPosHfBVOuoqTWC8qLkBJoMy0KQZayJ9sT34YGY6tuI0KJ/IvfE2yEIEvpye1Es1gKcB55BU9PWj66CmPBkTglP1j5nEaPSLkPlnnvu0f7mOA6//PJLwn369OmDefPmtee0LlxkFAbXD5WkSpJlzTgJhgTt73iMilZbRMVAzx5IsgwWqS+EdkUJ6UJ3dgstaStZKMKq64eur+Mki248RkVSDRW2LDVDhbQnKkhJMRsGRiQFQ6OjXD+6a82Z6wegUuk3JmJUstdQofstmPyKqRgqgD7n32mbjMkFe8E1ViH6638hiEMxK6Dm8Rk4JevKCWQDzPcIz7OGyKku6/px4aIrgCziHOX6kWXjAhKOinpRuDg3tKRmwgSnhM4O4GsgiVHb7Z3ATpei1flhGFt9BlksBBOjYjBUkshMG5dRSUGfQkAYnlQZlSTStmjoiBT69LHN40s+y4g1ErXihI160AGdbFDcBwwVQwp9kxAz2ey0BGTOB2UvavvOBgBEfloIf8tOjPEoCeG8Y45MtcldGrEaFcagUcmmzLTZ0xIXLrIEmkbF4PqRYwyVKLVQ2IHoU5ieI9EqeeFjBIjVW9PSPvPfibLSAsZaP4IoaUaZz0pMG7cooTGFvvZ9sAlySy0ABlxZPwe9sQbRzCTHqLTPdcN2kKGiGYsmVoEO9zQbMSR1vtRUpbndNI0Uu2+4fuh5ZeX6SQX0mO0pGgcmrxRysBGjt74ClgF2B4aAK7FPl/9bxr6kUcmelrhwkSUgDz+OYzUXjSQbjYJwRDdU4vlyiaHCFvfEBkF9K96zpl3ts2VUZF1bYweO0qhEKAEjzahoYtq4UT9kW1PbapSwZLao0jJjqFMQRiUZg4N+8DIpGBodUesHsGdU4tVwYvLLlFhtIQK5rQGAzvz5EVLdi4yhFlC2gbVw/RA2MlVDRaDGqTUKeMcfAwDwiYq7dVPJ/im3t6vDUqOiMiocy2TUWE8WrqHiwoUJdGE/EkAhqxoVAoPrJ86bh0gZKhuj6lvxnnVpaZ/5b61ycpzFndaohNVcFizDaCJbWQij/66P0J+vTqBR0d1MhrapodhsO9gUgDJUknhY0k1JhVFhGEbbryMYlRjXT5yq2AzLg8lXijESnQqZf7mRvco2+aVgeGO20WyCodaPauSXqJl5U3b9UMxMWygKz9AZilEHYF20Eq15vdvT5C6NeIxKNglpAddQceEiBrShwlKhuqKd68fmppZlWdOo8CU9sUFQ33ZrNrQrRDmhRiXOIktrVEhoss/LaSxKdM1X6FHzHU7I+SFB1I/yf4zrR9VQxKtO6wQpaVQMrp/UzkvGLp6x117YRf3Qi67V/GALuwEApCYlVT4xVHLCiqGSzW4fwFQ9mZR6UMs8pOz6oWi/tpAAhuXhP+BM1Pp64u22SRllxvZ1mJ8THl7XqGST2wdwDRUXLmJAu37o8GTJ5PpJxKjIrfVANAgwHNii7tgtFkGQWSAagtxal3L76PXNGPVDopXiMSr6Ikmyy/ooAZ2wfQUAoCdXB0j2ol+7hG+aoaIuqqnClwKjkg6NCRm7zmBU7JgyArZAzVCrjjFhJQKhGuV3VXCbraBdP2SulhS0k1GhxqmNZIruNQpflJ+KXWJJVkWuZBvMzwmOYlSybdyyqzUuXHQwWkNRzHvzF/ywplr7zuD60aJ+zGJaKSGjoulTCivA8h7IYFEjKiUktGigFJAoj4oTMa3i+jFG/MhCBOIuRT/DMTKKI/ZlLchpzS4WWX3bJ4tqqiBi2tQZldQMDY1R6QBDJTaPCnVdLcgsTVCrGipRlYHJadqiHLed7rZMgyR8k2Qgqha1LG0no0InjiPlIADaaHeXODuYw/FZxmVUXLjISqzZWo+fNuzFf37QyzrQGWdZSlgaE/WTIDOtLqTtofzPMtgjFiq/NaRuqNALnGDxFh5vkeWoFPokfT5hL8Q96wFRXzBKo3tiD6BCsmBU5HAr5FAzAIAtaB+j0l6NSqqem45gVFIR0wKxhoogSvAhAl+LMpe4HsMy0t50QUuhL0may4a4fhrb0sCoUNXMiRGXbcxANoF2b5JnmMuouHCRhSCsSIgq6BemXCJ0eLJoEtM6ZlRUvQbDMNgjqYZK/a6U25yo1o8TjYoMPX0+YVSEHSvU35T+lAn2hopsEZ5MtBNMoLBdET8ApVFJJuqHab/rh+yWycy0pE92mWnNf2ttK6BDlJU09AM8NWBkCUx+Odi80oy1OR3QGBVJZ0IIoxKOiFrywWRA63paqWrAgpaM0dWo2IG+R8g4EUYlm3KoAK6h4uI3DhLiSYfqkr9pkamVRiWaIOGbptdQRY4sC+wRigDAkFY/WYiG6JBYN5ATjQoAtIaMhoq4XamL0lA+DgBQJsYzVJT/6QVd16e0P0Q2pTwqaUiBP3pAKcoK/agsyVwmU7vMvwaNioWYVglR5gAxCrm1AaIoYxCvXCM+y9kUQL8mSg4fpX95AY82X1tDySdCNDIqlKEiOavD9VsG/ZwgUT79uxcgP8eD0QOzq7Bl2mr9uHCxL4I80OiiaOTNzstzet0bxCZ8IzlJbF0/ml5DcYMwDIM9YpHyW/0uyLKcdIVfIHHUT3xDRW8rocp9Xg5Saz2k+h0AGOztfTCKa35EkdQAOdQCxp8XcxwrMa3UpBgqTDv1KQDFqCSx0KRDozL36BEpXxensNOo0J9lC0aFYTkwBWWQG6sgNVVBkmUM8ihjznXPfkOF3C+yLFPp/xn4vRxaQ4KB1XQKQ9SPJaPiGip2oA17okkpKfDj4UtnZHT+pwL3Krr4TYNQxwZDhRKZkgVPlmLDk4U4fnBZCGuJuYihwjIMasR8yAyJ/KlPrc3tyExLGzGtQZ1REXcobApb3h9CbjfUiErVY3HvFsvjkNMyloxK+/QpADB6YCnGDSrDrAnOw5xp3WQqCd+0fTP8kGY1F4h9eLJV1A9AuX8aq8BLYfTmagEAXPehmWhqWmHFqPAcqxmlyVZQBozFDelIPKLdcl0/9jAwKpRBl21GCuAaKi5+46CrCJM3PbJIKK4fZTtJRkzCt6igPFitDBWpSQkZhTdHYyRYBhDBQcpT82Gk6P6xY1QEB4wKwzDa721hlVHxcBC2LgcA8L1HgWUYbBWUpFli9SbL41hVT9YYpDS4fgpyvLjspDEYP7jc8T7pyKPSEbBnVOioHxtDRRPU7kEv7AHHyBBzSsHmZ3/1ecKoSBSjwnEMfKqbL0QxIk5Bp9AHgKB6DJdRSQzWxlDJRmR361y4yDDI4i7LisDPmFaeNYQn26bQt7jJzW4fgNIm5Kup9FMU1LaHUQH0BYNoVHK5KIRtSuVzfsBksCyDbQkMFbKm0m9fJL9He0OTUwXNomRT+m8zEhUltPpN25fkUmmqRl8o80csH5yJZqYddLFLuvIzYVRSc/0Yx4noVGjGxoU1OAsxbbbCvYouftOg8zCEo5IW8cMwykOOTvgmUy9vCV0/FoYKWdRFYqikGKKcKOonUaQMr7oeWoMKo9IruA6QBLDFvcCV9FYYFVExVKSaTZZZUs0alXSGJqeKdGhUOgJ2mWmtcuLE7KsyKsKOlZjGrwYAyN2GZKKZaYeeFVnWxNgGQyUF10+MoUIYFdGN+kkEKzFttiK7W+fCRYYhmnzctD6FYRhDhAZNzdMJ36wehpaMirqZkKcYKmKaGRVNTJvgLZK0l7x9dm9W9Cn8oP2UdrIMdggliMADOdgEsWp9zDHIWbW3ZNXVxQQK2h2anCpoEiWbDZVUM9MCek4eCBF4GBFVYgGkHqMz09A0g9xLtBaF5xgt6swJo/Ltit249qn/YUdNCwDj/QvQjErigqG/dViJabMV2d06Fy4yDMFgfOi5HMjDk4FNZtqIkECjYu/6ieYR18/OlGr+0G/byeZRAXRDpjUkIJ8JorBls9KPgVPV/QEBHNYyAwEAwrpvYo5hZlRIobzOTONuTKHfac1ICFpUSsMY9WOzb14p/AefB++U3+PvLcfirsbjwPnzM9bWdIIYaBGDocJqoehO8qj8uK4GNQ0hrNmqCNEFU4lvEuKsGSrZPBE6GXTW3mx3kWV361y4yDAMjEpUREQwGios5foxJnyTdNcPx8UcV0t+ZmBUVOo7p1xZ4SNBLTIoqTbTCxr1OVF4sli3Ay2v/QVTuVUAFDHteO8WMJDBdhsItqDc0M6VjOJSiG78AbJgzBwqmRK+WfW3o7GvuH44iqWjYWRUbCwVAJ7B+8M37kjsFIoBMFmtx6GhGeqC3jeOZeD3EUYlsZiW5C4i914MoxI2aVRcRsUWVgnfshXuVXTxmwatUYlEddePlzAqVPVkmr2IGDLTmurdSCLkZiVs1KhRUf6XWF4PM63bjmQRK8JU2kEWN7tFOrr6S8jNezGH/Q79+WogEsR0/zqlD4OmatuR/bdK3cHklQLRIIQtPxr7qCV8U9ugCWk70VChHrztCU/ONGyrJyeo9UODFnfvK4YKeYMn9xjPKbW0/Em4fkg0D7lvzQZd0Oz6yfIFuDNBv9BkW8p8M7K7dS5cZBjm3CjhiJo+36vcGrpGRY90IfuRN0Czf1duqQVkEeB4MLlF2vd01AOrFpATa7Yk3Wa7/BvxMtPKsgxh+89KOyDjtNyvcWH+f1DJNUL05IKnDRXSZzDwDJkOAIia3D/kXAzDQGqphbDtJ2XfYud5T9KNfY5RSSHqh4AmYzJZQDGdIJ6GyP+3d97hcpRl//9O2X56S++VkA4JRCBAqFKk+dpCBARpryBFCGhUioAvhCaKkS4I/lRARPEVARFeUEJCkZbeSD0lOf1sm/L7Y/aZeWZ2tp3dPWfPOffnunIl2ZmdeabsPPd876ZY3ckB5JT1YykqzFBJ3IeJ5d0OQ6XUYy/6E/43UurNG0t7dARRZJxZPzFHR2Fbrx/H5NGVyJrxyHbXjxmfUt4AQbB+YswA0HUdUv04Y92WHTmPOVVsQ7o3bK11D/TOFkCS0YYK1ErdGCfvR5fmQ+th/w2Ri3Mwx6np8EwxDBV196fQuAJ1pqICHZHXHwKi3RDrJ0AeOyfn4ykUvG1SynN3akUlczCt2/JSNsp42GTIfmNy4jyYdVSycf0odgOFGemhgAeA4fox6iFlF1g+lLErKqV9D9FVJIY06bJ+ANh7/ThiCliGgez4kVvxGvZiZaaiosNSVFJUfk1HqmyRdIqK8rmhpkgjZ+Bl74mI6yK6NS9+0XkCpNoxruNUNR1i5TCIDRMBXTer1wJWMO3c6LtQ924APH4EllwKQeq/rhz2YNrSffBmpahkCLLmlw8cRYUF09ozcszKtNm4fhK/17jDBVQeTBgqkbjNiPOQ6yclVPCNIAYIdkXFzVAxlumO9GTAStF1ystWxo+98JlV5VaHVGcoKnrXfuiRrpzGnCq2gQX7uk1casLtI4+djRbPSPyk/Szc2n429qg15rEymArMJkM50UdG3WelKesAJKiYE3kXAOA/YllBKtLmw0Bx/aQq+MYbzZlcP/zyUjbKeJzNGFlGTk6un0SwOztX7LdQHvQCMF4e+N90qU/A/UmqEvqlSGmPjiCKDD/puwXT8nElqVJGnZkFbsXe+G3pmg7BGzSb9+WqqqR6E0+VnqxHu00jQx47B7IkoE0LIawbD3ef12GoCPYJRRpuVD7l66louo5qsRsyVED2Qp7yhZyOoRgMNEXFmVrr1gk7Ffx9O1AUFWchQhbompuhYpyjuCNGpSJouX74/j+lPgH3J/zloGBagihhFEd6ckpFBanjBlIrKnZDRXC8UTJVJRdDRdN1OEfhfLt0TlzKzo8BXYNYPQpieX1S4FySosIZVAAgDTMMFa1tL7Rwh7msRjSUILG8riQamQ2Ugm+88cuj5uL64dYt4UO1ITrcMJbrJxGjkkVlWistWbP9XR4yjO7uiGIaM6IwcFK3+wO+71epG3SlPTqCKDL29GQNMWfWD5+enGLy4N9GdF03q7SKSTEqSGwr8f9EnIqWQ+aP25u2M7DQ+XBWdn0MAGagqzNlM9n1Y8XSAIDgLzMroqqNm81lNVK3sbysNBri8cZJKU/eZnO+PLJ+eKO0FIzEbHAaj8z1Y1WmzT6Y1qmolCeCacORuGm8UGpyZkTTUCntc0WGCjGkUbOOUUmtqPBvI3q0C1CixnfLam3rJSkV9eONMeSQ+cNPYOzhwlwGzJByGira/s+N/SWUET4TwiOLSeu7ZaWw76r7jLoruq6jllNUSoGB5vrJJ+sn2yrEpYTkVFSY68eXQx0VU0nRE/9PuH54RYVreEikRyRFhSBSo6gaXvr3dmzb29Gv40iqo5Kq4Jump3zLtSkqiUJvQrAKguy1rZfk+qkdm/hOM/Rod87jZQ+XdK4fXdOgte0FAIg1oxLfs5Y71RSAV344Q2W4UaWWKSq6DpvrpxQQBngwbS5ZP2oKo7SUcbokZcnu+onF1LTHrWqaeY/HHQXfWDCtqulmddpSVwlKARY3RIYKQbiwfkcrnntjK/7w+uZ+HUemGBVTBdHdDRVBsD+Atc5Ecz6HmsJvi3epCOWGeyhbVYV/kDMDKTk9mTOcOpoAVQFkL4SEQcGP1+dJfgQ4lR/ACqjVmrdBV2LQdStGhR1DfzNgFBWW/p2mhH62WT+ZOmWXEkmuH6aoJH5rOux9gJwoCqc4OVw/Qb9sbr+j22j3QOXzM8N+JxRMSxAusAqSnT3xfh2Hsylh6oJv7nK8RxJtb/J6VwsAd5XB6hvEGQAsoLZpS1bjdVVUNPtDm5+k1dZdxmdVI83ic/zbk9dNUXHpRSOU10MIVgGaCrV5WyJGpdQUFfd/lxqp05OzL6E/0MrnA8nF19j/vR7RrCybrpZKnDs/zl4/sigg6DeUGdNQKfFqq6WARDEqBJEa5mvOxi9d3HFw6ckxFdFEMSqvxx5Mq6cIpnW+iWisx4/L5C24ZHtIo2YY43D00kmFGZvAReynK/imte421udK2/MPcL83taHCG0WCIFhpyvs2AmoMVWLYWFYihspAqaOSKkYlVVdsNwZijIpzqMxgFgTBTJFP9zzgmxk6e/1IkmgWfWtpjxjbL3GVoBSgGBWCSEPcNFQyR/oXEzXLEvpaCkXF+QPXOg1FxdX146JUyOPnAxCgNW8zv5sOfoIyJzwzRkWz7QcAtAPJhoqUMUbFqsZrU3/MgNpN8MbaAACK4IHgK8s47r5goBgqKRWV3rh+BpCh4lRU+Lf4bGqpuCkqZql8UcDwmiAAYGdTV9L2CXcoPZkg0sC6oPZWUdF0HZ83dtrSi3tDqmBatxgV3c314yz2ltb1YxkA5mfBKkgjjEBVZdt7WY9XEoWkCc8tmFZr3WN8VjPS/Iw3VNK5fpxjtQJqN8EXbQUAdEuVJZMeyyv9paz6p+z1w6l7GbN+dEtZGygkx6jwyl7mfj+Kq6Kim9saWRcCwBsqJXwTlAhDQlH51a9+hWXLltk+W7duHc4991zMnTsXS5YswZNPPmlbrmkafvazn+Goo47C3Llz8e1vfxs7d+be6p4Y2ChcpkpvjI2165tw0+Nr8Ke3tuU5jkzpyVYArGuMirOGCsv6cXX9GH8735blCYcaY9m2NuN4XRUVlp6s2ScvXVOgtScyfqpHW/vL5Prh5hNe/RFrxwCyD4iFUdNppCn3yJUZx9xXDBRFJZteP3qmrJ+BqKgkZf1wyl5vXT+JvyVRwIhaQ1Fp7Ywmtl/ak28pwIpVekvcTdbr0T399NO47777bJ+1trbiggsuwNixY/Hcc8/hv//7v7Fy5Uo899xz5joPPvggnnnmGdx66634f//v/0HTNFx00UWIxWK9Pghi4MHLuL1RVXY1G+m8zW3hvMZhi1Hh05O9yb1+2KTN/6htD8NYDxA3xiOmzfpxGCrjDwFgKBV8h2I33BQVZ/dkcyJsbwI0FfD4ba4oOQdFxVYBVZQgDZsMAGho/xQA0OOpSjvevoQft1DCE3jq7ska9+9BGKOSIj0ZAAI5u37siookCRhRG3Jsf+Ccm/7i5MPGYsH0BkwaVTovHG7kbKg0Njbi0ksvxcqVKzF+/Hjbst///vfweDy45ZZbMGnSJJxzzjk4//zz8dBDDwEAYrEYHnvsMVx55ZU45phjMH36dNx7773Yt28f/v73vxfkgIiBAS/j9iZOpStsZAtl8uVngp8cIjHV7Ozq1j2ZPRQDfqtDMK+omPEpgQoIsi9pX86Kr+bnZTUQGyYBAJTt6d0/dkUlRXoyq3zKAmmrRtrcM/wEkS5Ghd82gxkqXrUHABAmRSVn2HVLVlS4fw8JRSX5PoymTU92yfrhzgNTVNy2T7hzxKwRuOzMmSWfnpxzT/ZPP/0UHo8HL774In7xi19g9+7d5rK1a9di4cKFkGVrs4cffjh+9atfoaWlBXv27EF3dzcWLVpkLq+oqMCMGTOwZs0anHbaab0/kAKfaBb45QwAG0z05zHyNSQUVc/5+nUzQ0VPf+0zHWOquIBQQIYsi+YPmO+wE/TJaO8yFECvLJr713oOADDiU9zGxAwIQUges2/yQoSbtkBZ9wYCs46DICYbEMbGE9sSBasyrapDkkSrm3NiTPE247cp146y7c/D1U4J+uTksXLziSgJtuX6qGmIcQlKEU9V0bMrsr1PeXeJ7Bh3KcHuKU237ntJEpO6c6cbP7PDpBI+Th5JEqE7DBWPx/rtMOM/pqgpj0cD/8zQIMuiqaz4vDLKgl7UVPhwoMNw/Xi432ZfQHNG8cjZUFmyZAmWLFniumzfvn2YOnWq7bOGBqMx2969e7Fv3z4AwIgRI5LWYct6gygKqK4OZV6xF1RUBIqy3VKiP45Rkq2J2OPz5Hz9wok3L1ESs/qu2zFqmp5SYh9WXwFRFFBRYbiYRFGEJxHwVxHyYe9+Q1EI+K2xt6sd6Abgrx3mOiZf4vt+vzdpuXrYidj5wZ+hHtgJcdPrqDr8DNdxNXcaBpJHFuFNbE/VNFRUBCAmHh7lZX5UV4cQ62oEAJSNmogqbn8VZX7z35WV/uSxcOekoiJolicHAC04G11/EcFaSatldUX77TnJ5j4VBcN4DQSSz3GpUJk4DlG037v8efd45bTjDwSNgFGvRyrZ43TS1WN375eHrHuvsty4JwUp9fH4/FYVa1XTUVkZNIO9a2tCqCzzYdzwChxI9NoK9dM9QHNG4cnZUElHJBKB12svG+7zGRJ4NBpFOGz4793WaW9v7/V+NU1HR0dPr7/vhiSJqKgIoKMjbEthHUz05zF2dUfNfzfv78KwymRXSTpaE7USIpE4WltTl59Pd4x8cB6PVxbR3m7cT91d0cS6Knp6mJHAvxnq5v57Go0MG8VX7TomRTGMq67uqMtyCf7Dv4ae1x/BgTf+H5QRcyBVJFd8bWu37nOdFXpTdXR0hBFJFNGLRGJobe1GuNGodhsL1Nv2F41arjZN0ZLGwisTra3dUGP2onxS3VioiUaKHXoo7fkvBLncp4IgALqOeEwp+rh6S0+PcU9F49YYDUXFOu894Vja8Xd0GM9SXddL9jh5JEmE7LVPNwp3/ELinmttD6c8ntY2696PKxpa9neZ/+/qjECLK6ivsoxwTUu+t4sJzRm5U1ERyEqdKaih4vf7k4Jio1HjRxkMBuH3GzdRLBYz/83WCQTys9CUFJNOvqiqVrRtlwr9cYx8qezucDzn/XcmjAYly7G7HWOUi42RRMGcKLweyVxX4+I/mMzs5x64kiia66qJNzmEal3HxMwbRXEfszj5CEjr34K6dz263/g1gl+8JmmdeNxqYc/iTlRNN46PPTh0IB4JQ2szVEq9cpRtf7wC75VF97EIAjRdRzSmQvHZl4vDpkBt3o6ILiMuBvrs3snmPhW561iyv9uEPaKqum2MvKGS6h5hsFgqAULpHqcDr8P1IwjWNWIB6j0RJeXx8FVrVU1HhDO4dd04l8OrrTgVUeifc0NzRuEpqKNp+PDhaGpqsn3G/j9s2DDT5eO2zrBhwwo5FKLE4bNtcs360XQdXWHjIaXkEUzLjyHgs4wPPsCUD4A1+4pw63q4twEWTCuWJ2f8AFxgLtzHLAgC/EedBwBQd34ELdKZtA4fPGiluTrSk0UBasvngK5BCFZBDFXbtsEHNXpdev0Y2zD+dkuTZfVUmtUKCCVWsIQF0ZZKbRc3UjYl5EvoZ5gDUnXKLmWSgmltafLGbyqaJrA+7niD51922Lb5gFrPII4VGWoU9EouWLAA7733HlTVuoHeeecdTJgwAbW1tZg+fTrKysqwevVqc3lHRwc+++wzLFiwoJBDIUoce9ZPboZKT0QxH9T5ZP0w6VKA3fjwcbVF+PRk3c1Q4bN+uhI1VMrcm/SZ6clpxixWjYBQYcR1afuT6wvxxojIKSqAFaAsiSK0pq3Gv+snJG0jU9ZPprHKEw7Butrj8Ifuw0qupw6b+0p5/i5ECX2zdHwpH6gD0WHU8oGuWVWmdbzBR9wMlTorJkWi9ORBQ0ENlXPOOQddXV34wQ9+gM2bN+P555/HE088gUsuuQSAEZty7rnnYuXKlXjttdewfv16XH311Rg+fDhOPPHEQg6FKHHsdVRyS0/u5ILy+KydXDHLb0uCrZ4I31HYSk/WTUPA7+MCgROTvh4LA9FE4G0KRYU9pzPZVlLtWGO9/TuSlvHN6NL1+lGbjUJ4oouhwj/A/SkMFcFUkpIHKwgiNlcehh1qfcmlAbPxlLLSkFUJ/QzpyQOyjoqz1w/3QTaGSrLr1lhXEi03aEXQi7KA0fOn1FNuiewpaIxKbW0tHnnkEdx2220466yzUF9fj+uvvx5nnXWWuc6VV14JRVGwYsUKRCIRLFiwAI8++ig8Hk8hh0KUOM6KsLnAaqgASErpzAW+oZnP664y8N2T2eQQ8CYrKlqidL7gK4PgseKveKyKseknIbF2LLBtreG+ccAbI2bhMEdNCVEUoDYnFJWGiUnbsHVPdqlMy4811VDZPFpidoo5YZWaAcWTSlHJqYS+Zt/WQEAQBDP2CXAoezkWfAOs54ZTORlRG8SmXe0D6twQ6cnLUPnpT3+a9Nns2bPxu9/9LuV3JEnCddddh+uuuy6fXRMDHF7GjURzM1Q6e3hDJX9FRRYFm3HCqyt8NVmrr4gAr0dELK6Z8rXeZdRQcWtGyBCE1CoFj1THFJVk149NUZHsEx6b6DxKD/QOIw7MzfXDP8BTuX5STaYMFrsioLQmA2a8lbLSYLns7BNvTorKAOz1Axiqopb4udtdP5l7/ThdP5aiYldOJoyowKZd7agqyy2TkChdCqqoEES28IpKJB9FJS/XjzEGWRJtE7bPxVDhFRUxYdjE4ho8rAosM1Qcgas8mVQKc73accZ6bXugKzEIMlfHhMWhCAIkM45Esy3zde0yxlI5DIIvuY5EdjEqxt+p1B82j5aaQcCGU8oTeKpeP7l0Tx6IlWmBxP3CvSAwmOsnbWVah6IS4Vw/PF86YgKmjanCzImpXxqIgQU58Yh+Ia70PuvHFqOSTzAtV3I+laFiNhLUdVvTP7aOJ1G4Tu9OVKUtq0m5PyFNJo1tvWAVBH85oGtm92NrzIn05DS9fvwdhsvITU0B7FK5L4XrJ12MCn8MpWYPmIpKiY2Lx6mEMbRBHqMC2I0Kvn6GGaOSRl1NUlQSRo2zp0/QL2Pe1HqKURlE0JUk+gUlr2DaAsWomG92oiOYljdUuF4/XEoom+DNGJVupqikNlRSNSV0IgiCEacCQHUE1CYKwtqCaZkLiykr3nbDZSTVJ8enAPa00IxZPynGyubUUksDNtOTS3gCF1MYgRp3Lw9aRcXWc4pXVJjrR01pyKcyVJyuH2LwQVeY6BdswbQ5KyqFilFhwbSOGBUusJbNA5qm2wJZ2frsYasnuh6nU1SsYNrMYxNrxxj7dQTUundP5uuo6PC0G8ZNJkVFQOr27pliVKwYiczH0peIAyGYVkg+t5qu21yCmQyVgaqo8ON1c0Fqup7k4mE4P08VTEsMPshQIfoFe3pyP8WoaFyMSsqsHys9mZ8cWC0VpqxkE6PCXD+ZFBWAT1G2Gyp8EKUzzVXVdFSJPRCjnYAgQqwb57ptdnx+n5xSEclkVFmun9KaJJiSUsoTuFt6crp4FTd4F+BAIpWh4udckOEUz4PUwbQD6xwQuUPBtES/YC/4lkcdlUJk/TgVFTk5RsUWTCsIOHXRONRW+jF7Yp1RDM6MUUkdwJdNwTdz3URArXpgJ3Rdg5Cwctwq06qm60fHOMkoOifWjLIF4fLUVfpx6qJxaKhO3bYic4xKYr0SmyOsYNr+HUc63NQq5z2RyZbl78WBhJTC9SOKViZdNKYCweTvJhV8S5H1Qww+yFAh+gW+fH2urp+C1VFhBd+cMSpel6wf6FzlVwHTxlZj2lhDPdEjXYBiGE9CsCrl/vgMokyIVcMBSQbiEegdzRAqjRYTtsq0LsG0o+WEwVQ7PuW2BUHAOUdPSr9/zuXlhl6i6bEDqYS+rhuGoCgISQZ3ZkVlgMaopFBUAKP4YCyupVRYU7l+nMG0xOCDTFGiX4jnUUK/UDEqqun6cWb9cJVpTZk+dVyAlohPEfzlKVUMwJ5BlAlBlCDWGHEqauNmbswuigrroqzpGJNQVKQUbp9sSRXwybAUldKaJAZSwTeAa3rpDKzNto7KgDZU7GPPVEslZTAtGSqDHjJUikg+fWgGM5qm2x7EMUXL+lzF4qqt1gJ7K+0NVjCtaGvOZ6ujYu5HT/kWq3cnevykyfgBMk/+TuRRBxvj3PWx+Rk7T2OimzCy/SMA9hL6TFHJ11CRMripNDNGJa/dFByz108JP9lEN0MlTaqyGwOxMi3gzPqxXySmZKZSWOOOeLRUBd+IwQdd4SLxzCsbcdUDb6GtK9rfQyk5nKWwgexVFd7tw+htQG2qyrRuwbSabk0OztRXrStzxg+QW4wKAEhjZgEA1J2fQDdVEw0+xPCF1hdx8N4/YYLcZG4vqPegUgxDh5Xe3FsyxaiwQyg15WJAZP1w94+zBo7z81QM1KwfKZ3rJ0MZfaaosG1Y6ckD6xwQuUOGSpFYt6MVXeE4djV19fdQSg7e18weMdkG1DK3T4DrYNzbOBWr4JuYsoQ+3z2ZrwrLo3dnzvixbyu78UnDJgEeP/RoF7SW7QCMCWqsvB8ijGM+0f+RaaiNFA1lBxXDIXjyKx9uGVXuy0u+4FsJT142RSVFF/BMqtvgiFGxj501E2zvjsEN9oLDfvumokKun0EPGSpFgj1IlDzSZwcrfMZP0J946GRZRr8zbDzEqsqsWJDexqlYJfRTKyq8u0ZNGaPC+vwU1vUjiHKS+0fVdIyTW8x1Znj3oDy8C5quY1QiPkXIU00xxoq0Yy3VGBX2ll7K7gBe7UmlqGRdR6XEzn8m+N+O5FBUaiuMZp4HOiKu32XPjUCiezlrvSGX8LUmCgNd4SKhclI9YSfO9djJpr07D1NUKkOcodJLY5DP+vGlyPrhK9OyyqFJMSqJGipiphiVLCvT8jD3j7LzY/O7zFBRReMcTG19G6qqY0wiPkWozS8+xTbWjFk/ee+qoJy4YAwOnd6Ag8alV7f6E9ZFGOh9jAqfgTaQSFWZFgBqmKHS6e4uNxUVLykqQw0yVIqERopKStg58cgifFzp7GzoShgqFSEv14U2f0XF600Vo2KtnzHrJ1tDJYfxyglDRWvaAj3aDVXVTENlx5hToOnAyPAmxPdsxGgpEUhbAENFGqBZP/On1uPyM2eaSl2p4iz6llxOP5OiMrALvglCsupVW2kYKvtTKCosRsXvs6uwA81YI3KHDJUioZiGCikqTtgDxyMJnKKSZYxKwvVTFvBwzd0KG6PCpyfzb4DMwOI/03XdUlQyuH5yjVExtlkLsXokoOtQdn0Kb6wdlWIYGgS01c7B2pjRzyf6ys9QKxnxUPlm/BhjHZhZPwMFZ9G3JNfPYI1RSQzXGUgLADUVRlxVStePqajYOy2XspuPKAx0hYuEluIBRHBKhmwZCLkqKuVBb1LBs16PQxQQ8ssI+mSUBTxmPQfA7tow05n5D6PdgJq52BuQe4wKQxozGwAQ3/AmKsK7AQBdvmEQPD78ofswHJAbgKhhpLSoZZADoZy235ux8qX8idxJUlR6mfVTaopWJthvx61IG4tRae2MJr186LpuvuCwYNpY3OrVRQxuyFApEqahQopKEuyBw8eoZFudlsWolAU8kB0l5HPF7J4siZAlET86/1D86LxDbXK64Kao8FkbLJA2Q7E3oHeuHwDwzlgCCCLUXZ9gfPt7AICOwChIooAYPHi18mwg4XbapdYWxB2QOevH+HuAzZMlQ2ZFJf33B6yiYhoqyVNPRcgLSRSg60Bbpz3zhz8/fp/dree2LWJwQVe4SCh9EKMSi6toH4B1Wpgy4ZFEW3v3bGAuooBPytjhN9txsDeyhuog6qrs/W/4iVh1CabVs8z4Aeyl03NBrGiAPOULAIC6qNGksDM42txeN0LQl1yF1dFJeC06K7eNp9pnhiq6pdqUcKCQSVHRMrgzB2odlXSGiigIqC433D/OOBW+Km2AiycDBp6xRuQOGSpFwgymLWLWzz2//w+u++W/U9YdKFUU16yf7GJUFE4FYemNeceopHnQuSkqfME3LcuMH8CqGdObSrq+eafbrKau0GiboaaVD8Mz3Udgn16X87bdcOvwy8MOgVw/vcNpZCcbKum/P2AVlcT9kmrcqVKUeUPFT4bKkIMMlSLRF1k/+/Z3Q1E17NvfXbR9FIO4kjA2ZCHn9GRFs4ycQikq6aRjt2cgX/BNO7ALAMymgenobYwKAIiVwyBPXgQA6NE8iPrrbL1+UtV46S2Ze/1QMG0+OFPVcw2mNQ3FATZJs3vWI7v/5liKslNR4TP0PLLDUKEYlUEPGSpFgO8LU8wYFbYPt7LypQzv+vHlaqiYigrXPTjfEvppDBU31wY/OaiNmwAA0rDJGfdndk/upWHlO+RMdEkVWB2dAlGSbMHEhX7DzhRPU6ol9AcKmRWVQZr1IzJFxf03V1uZyPxx1FIxMwVlMckwoYJvgx+6wkWAfxsqZtaPMsANFVm2YlSyrUzLqyD5KipmzEmaNzK3iZjtV4+FTUUlG0NFMKu95jrSxFgqGvCnuovxQtgI+LW5foqmqLgvp/Tk/DBT61Wr8zWQbMCkYqDXUXHL+gGAmvKE66c9Ak3X8eLb2/DBpmaupIEIj+PFghSVwQ8ZKkWAf8MvZh0V9pAbaIYK/9AxXT/RXsSoiHnGqGSlqCR/ZioZTVsBXYdQXgcxQ2oywCkqvez2DNgnNEtR0vpcUaFg2vxIVfCN3YuZ7pGBqqgwt2mq35zl+onio8378cL/bcPTr2y0qlm7KCoD7RwQuUOGShHg34aKGaPCJtoBZ6jkUUJf5TJ1rLfSPLN+sgymZZgVcRs3G9/PQk3hv5drejIPr5ywh35RXD9Z9/opyO6GHOa1czQlZLEbWXdPHmAXIJOiUssVfXtvYxMAI1U5llBcPYlSAjxU8G3wQ1e4CPSF60fTdLAtDzRDxTXrJ1fXjyiadVR6O/Ez11mqhybDORmY8nxTboaKWe01j1uCHask2GN0Cu76ybrXz8CaKEsFp6KiOgyVjJVpB2qvnzTpyYClqPREFby/sRmAcS7auozMRlkm189QhAyVItAXrh9+u93h7NwmpYJiBsYJOVem5YNp845RySLrB0hWDURRgK5rvVBUjL/zcv3onKKSeJPUNN10f4kFervMXJnW+JtcP70jVTAtm4Sz7p480AyVDK6fgM+oEA0A4aj1TGhpDwMwzk9SMC0VfBv00BUuAvzEWaysH34frP/NQCHOxYaYwbRZ1lFhE7Isi+ZDure1ahTTXZLJULE/GEUR0Fr3ArEwIHsh1ozJan9Chsmf8XljJ3Y3d7ku0zgXj5X1038xKgNsniwZUikqcpaun0Kno/cV6UroM1jPH579HUYWkMdNURlg54DIHTJUigD/cC9WjAqvqHQNNEVFtVINc41RMWuwiFzBt16X0M+uV4jzOSgKgpWW3DAJgii5fMttO+nL0gNGK4E7fvM+fvr0+64GjS1GxS3rp0AKR0ZFJXEMpKj0jlSKCpvAdT298jZQFRUhg+sHsNw/AOBNGG772yPm9yQyVIYcZKgUAT4LpVgxKvx2uwdajEqKXj+ZXCK6rnPumvxdP7wbKR18JVpRECAIAtTdnwHI3u0DZA5QBYC2riiicRXdEcU8Tzy8csIff/EUFfflLEKK7JTekSrrhy9mlu4+Ma/3ALsA7P5M93LAqtMGfBJmTaoFYBWAc1VUKEZl0EOGShGwZ/0UyfWj2g2VfDJJ+hq3gm86rG6oqdB0K4BYKmRl2gyuH37uF0UB8fVvQtn6rjGORGfjbBCySE/u6LHceG73Dv8m7RZMW6iHdvZZPzRJ9AZn528zmJa7fumUt4GqqLDhOo0NnpF1Rvfv+VPqTaOFKSpU8G1oImdehciVvohR4eMydBhR8mUBT1H2VWjM7smyPdUwrmrwIbUbhXejyZJgSsC9NdLMuIBMwbSwHoyTPPsQeesVAIB3/hmQh0/Jen9iFlk/Hd2WOhZ3cWm5KSpaMUroczEqb3y4G+9tbMblZ840Y4ooRiU/JEcMkJWezCkqaW4UbcBm/Ri/Naf7hufouSMR8EmYO7ke//xwNwCrIKRrejIpKoMeMkWLQF/EqDjjMgZSinLcUV2WvZRnUp94o0+WrPTk3hqD2caosPEJ0LDU/yagqZAnLoD3kDNy2p/ZkTjNBMQHRrsdl6uiwsWoFMoVwLsmXlm7C59sPYCNO9utcZCikhfmtXP0+pFlTlEZhDEqw2sCib+DKdeRJRFfmDkCQb+MypDXvkwWk1y1VEdl8FNQRWX16tX45je/6bps9OjReO211/DLX/4S9913X9LyDRs2FHIo/YpNUemDGBUA6OqJA5kb+JYEzHjzSEa8h0cSEVM015gMHl5hkBwTdT7jSPVWqjZtReTNxzBJno2PUIcx0gFUij2ANwD/MRdBEHJ7QLLxpnP9dHKdsOMuhopZP0OwFBVF1c0MpoIrKrqO7ohhBPMdrqmOSn5IjhgVy/Vj3VPp7uuBWpn2mHmjMG1MFeqrAlmtX+EwVDwyKSpDkYIaKvPmzcNbb71l++zDDz/EFVdcgcsvvxyAYZCcccYZuO666wq565KiL2JUnNsdSIqKs2uxnDBU3CZmHj6QVuAn6iJ1T45vehvagV04WtbxEY7DVM9eY/0R0yHIySmUmRC4yT8VHT3WdXRT49wUFU3TzN4vhatMa7mpeiKGgRLm2hywcZCd0jucRrbm4obUdB1xRcOu5i6MG15uMwoHqqIiCAIaqlOrKU6cioqb60ceYOeAyJ2CGiperxf19fXm/3t6enDHHXfgrLPOwjnnnAMA2LhxI77yla/Y1hts9Inrx6moDCBDhe+ECiRqR0Qznyuz5L1k93P32vWToTKt3t0KABgv7IVfiGGKZ5+x31EzerW/bNKTO/lg2rRZP6LNmGDnrnCKivF3NKaa14svwEXBtPnhVFTMmBPJcIXqurHsj29uxd/e/RyXnTkTC6Y3mN8fqIpKrrgrKg7XDxV8G/QU9QqvWrUK4XAYy5cvBwDEYjFs374dEydOLOZu+x2766dYWT+DR1FhmQ7xDK4fM53YbBVfqPRk95+B1nXAWC5omOnZiYmy0XtEGtlLQyWL9OQOzvXjVsjOrY4KkF3folxgBg9z+wAO1w/YOAqyuyFHUnoyb4BygbbNiYqsTa09tu9r+sBUVHKlPOgBf4Sya6+fwX0OiCJm/Rw4cABPPPEErr32WlRVVQEANm/eDFVV8fLLL+O2225DNBrFggULcN1116GhoSH9BjPAKjoWCudbe29RNb3gYwMA51TXE1Vy3k+hjjFXmGHh80lGcJzMUpQznKvE88j4jmgqMuwzN1IdI1+TxeuVXL/PFBUA+GLgP/AKKrr0AKrqR/dKSeAzOlKNt5MzOHU9eT02oXk9Irwea3um0ZU4N/nCtsEbwFFFMz9ntlah9peO/rpPi4nZJRnGOWS2NqsPpGo6hMTfgGHE8+eZfe6V3e/dUqO311CGiLKgB50Jl6jPK8Hvs09bvhS/375mMN6nTvrrGItmqDzzzDMoLy/HV7/6VfOzjRs3AgACgQDuv/9+7N+/H/fccw+++c1v4oUXXoDf70+1ubSIooDq6lBBxu2koiK7oC+eYMgqf67pKMrYAkF7ifW4pvd6P705xnxgD+XqyiCqq0Nm0Td/wJv2GJo7DbXB55FQXR1CKGjIwrJHznjszmNUVc009upqy1AetEvMuhpHa9jKcqmTjPP9uTAKs2vK0h9gCtoSFYR1pL4neMPA7XywMVdVBVFXa41DTDyoAz5PQe63spARg8O7e/h7mdlpVYlr2Bf09X1aTIIB437zJq6XJ2F0+n0eIzhUAcrLAzCtc0m0nWcmtlVXh1BdPXDOS2+uYW1lwDRUKsv9tvseAKqr+u4ezIbBdJ+moq+PsWiGygsvvIAzzzzTZnyceeaZWLx4MWpqrPSUKVOmYPHixfjHP/6BU045pVf70jQdHR09mVfMAUkSUVERQEdHOOcYiLZ2ayzxuIrW1u6Cjs25DwDY39aT837yOcZ8iCSCMiPhGFpbu81Jr7UtnPYYDiTkb0EQ0NrajXjCFdHdE035vVTHGOO6NXd1hqFE7a4ztaM5sQEPuhUJIcEoOLVDGN3r69nVZWxDVTXXbWiabnP9tLUnnw/m4unqiqDDZ73VdHYZvVAUpTD3WyTh8mnvjpqftXdZ55kpOJ2dEbS2FrccU3/dp8UkHk/cu93GOe1JGKiKoppqXWtbN8KJ69DRab/HmUu5qzMMGaV/TvK5hiG/dX/FYwra23tM1QmwzmF/MxjvUyeFPsaKikBW6kxRnjDr16/Hzp07cfrppyct440UAGhoaEBVVRX27duX1z4zpbb2FlXNnDbrJM5VWFV68f1c9wEYhcJ6u5/eHGM+sFgUQTCuG5PBozH3svGMWMIwkUUBiqKZD3Qli9Rm5zFGOKUAevL9o7S3GGMMVWNzexXmwFADPxdG9fpc6Vw8gts2Onpi4MNX3M4Hq5+jazo0LviYGV7snOZNYtMs48f4t3WPmbEVfXjv9PV9WkxYEUH2fGCGhyAIZoxKLK4hphjXNRK17gVd1837RNPd76VSpTfXsDxoFbIUBcF8Zqha4jdcYudgMN2nqejrYyyKo2nt2rWora3F9OnTbZ/fe++9OOmkk2x1JHbt2oXW1lZMnpx9z5RShw+W7G3qbCYUzZrsgYHV74cvoc//nSk92ex2LNmDadOd4+ZWd8ufD1R1C8Zj8SliqBobBSP4u1ktR5dYmXaM6RAyVKbla6gA7llQKleRlJ/U2hJusaCvMNWJ3eITI7asH5aeTIGMvcEZCM5n8fCBtqwJZzTOu+D0pO0MZvgUZTNTkMv8oYJvg5+iXOHPPvsM06ZNS/r8hBNOwO7du3HTTTdh27ZtWLNmDa644grMnz8fRx11VDGG0i/wVWOLJQGyfVQkYisGYtaP9dAx/laU7NKTZTOgy5454WT9jlZc+4u38ciLnyQtU1X7hO+EZfwIoRpswTj8rvtwPNG1OK8si0yVafkaKkDmXj9s/ACwZ78hfQ+rKYzv2O047QXfUq9HZMZ577plc2mabt4DvKuSv3+GQsE9PkWZr73EoIJvg5+iGCrNzc1mpg/PzJkz8fDDD2PDhg04++yz8Z3vfAcHHXQQVq1aNajezOwF3/SMXYHz2UdlmWWoFGM/xSDuMDjY21Gm4njOdGL2JpUqPXnvASOmZcfeTpdtpS+fr3cbhopYVgNRFPGv6FTsUmvzeoNlWT+pjpOvoZJqPT6NFbAMhb3MUMmhmFY63CZAWx0V6p6cF+z8OhUVUeAM2kTBNwCIcq5e/n4fuooKl/E3BM7BUKcoMSoPP/xwymWLFi3CokWLirHbksFZJ0PV9JRFxXoLm8QqQz4AXVA1HZGYioCv9PtMMuXErKOSePhkrqNiVaYFOPk8xcTPfKhubjGz2FsK2Zi5foRQtW0yFvJ4KPo8lmGlqFpSPYiObFw/KRQV1nm6oUAZIJkUFer1kx9O14/m4vpROUUlmkpRGQKTNK+osJpL5PoZWtAVLgLOibMY/X6Y6yLgk+B1qXlRqqiaZhpySa6fjIqKw/WToeCbmSETjqVclkpR0ZiiEqq1qQv5NP3j657wEw/D6fpxGm5usQn8RCWJAmoqci/t74abohKJqaZqxwKD6QHSO/j2B4CVxSM6Cr5Ziop1v6hDzFCpDFn3NFMlyfUztKDnTBFwTpzFiFPhS6mHAkYA5UAwVPg4FNl8O8oumFZ1NBHMZKiw7bkqKhmq0uosRqWs2qYa5DMxsG7RgKWA8HQ5XD/OqsZusQm89F9fFSjY26Vbv0WVmzhJUcmPZEXF+lx0iVFxU1QEYejFqLi5foaC+2uoQ4ZKEXBOnMXo98O7QcoGkKHCGyNO10/OioqU3vXDJtXuiJIUwJqu5LyuKtDDHQCMYFp+Lsj3ochUlXSKCpt8nIqKW2wCP55CuX2M7bo/GsIxY9xW1k/BdjmkSFVCn282qXIxKjEXRWWoTNDlAY95n8kO10+qYHhicEGGShFINSkWEvNhJYkDylBh50KA9aD1ZJ31k1swLX/e+c6//HfcFBW9pxWADogyBH95wRQVwCh9D9gnHkZHQlFhAdLO43KLTeDHU6hAWsA9PRmw4lQo6yc/nN2TVbN3j+VejCtW9eRoTDONQ9OoGSITtCgKmDyqEmUBD2oqjAKiTvcvMbgp/cjLAUiS66cYMSqapQiYhkrPADBUEm+IsiyaBoAsJx7MWSsq2bl+eMOnJ6LAZ+uNkzpGRbMF0gq2xnv5Tg6+NIoKq6NSU+FDa2e0XxWVVMfJaqlQHZX8SOqebP6eRTNgO+aonaKoOjyywBk1Q+fcX/+NeYgrGvxeY8oynwEUnzIkIEWlCCS7fgqvqFjqggBfolcOq2JZyjBjxMOnF/Y2mFZKb6jwhg/fBdjYVuqsHxafIpYZVZT5yThv108iGNAtRoW5fqrLjbdGVU2tqLAh2RSVAtVQAZKzm1g2WTiqGJVRHeMgciNJUeFUEnaPOY1Z9n9tiLl+AMOAY0YKkKyqEoMbuspFIDmYtnhZP5JotT3PlN5bCvBdfhmeLMdvubuc6cmZXT98KXjjO3Z1hofVUBFChqHC/0jyfYv1eRPtAhyTUFzRTPdUTbmR5eBUmPjYBMElmLahoK4f+3HWJrKJjMyf1OsR2SEJTkUl8bloL6HPwxQWZ4r6UMT5skIMbshQKQJJMSpaERQVzZpo5QzKQilhlc+3HjC9T09mMSop6qikUVT4GB8nGlc+HyiOouI0VFixN0kUzCwHZ5Cwsyot/29JFExjohDwxylLgtldOhxTbGnSZKf0Dj5gFnCvo5JJURnKhgozUKjY29CADJUi4Jw4i6uoCFkrEqUAG6OtsmS2Bd8cheIypicrqRUVZ7wLj5WanFBUuIdhvjEZLEbFGUzL2tiXBT0pex+5xSYwY62QqcmAPZg26JMRTLh+IlHFpqiw5npEbjhjVHiVhJ37aCyFoaIPPdePEw+5foYUFExbBPoiRsUMppVESFLiYVcEg6jQmOXzZT5GxXjgZkrj5lUkILcYlZ6o01Cxl6Ln0TqbARjF3gAUND2ZxRNFHbI+U1Qqgt6U58N863bJQipkfAq/XQAI+j3wJ8bNF30z1ivobocMyenJmvl5yhiVmMP1M4TlLIlcP0MKeswUgSRDpYiVaWVRMN0ombJmSgHFRVHpdR0V5vpJFaPCKSrOom9Oo4ehx6PQDuwCAIh1YwGgsOnJsnt6sqmoBDwpXWFusQmSaagULj4FsB9z0C/Dz4JpYw5FZQhPlvmQqnuyKAquWT+AZdwOxWBaJ6SoDC1IUSkCzhiVYlSmVbgYCznx72IoN4VGccn6SeXqcMIbZwD/sE8Vo8KlJzvrqKjW+bN93rwN0DUIoRqIZUVQVFKkJ7MYmpBfNtUm5/V0m6BMQ6WAgbTOfQT9MgI+Y9zhqGqLURnCc2VeJCkqiVMqiYKpmDnvkRjFqJhIlJ48pCBztAj0RWVaZvxIopB1MGopYKYn21w/rOBbdoqKlG2MSi+yftTGzca2h00yP+Ml9nzl9lSVadn4QjZFxd31w09Qc6fUobbSj9mTavMalxOb68cnm6mhkZhic/2QotI7smlK6HQPRh1ZP0NaUWGl9IfwORhKkKJSBJyuiOIUfLNSdXU9uxiPUsAZEAsgpYKQ9F2udgzAl9DPnJ6cVEclxcPeNFQaJpufiQV0/fjMyrT2Y+1OGCpBv8zFqKRw/XDj+eLh4/CNL85Aa2t3RkMvF0Sb68eDAItRiargb2eyU3qHU1ExmxIKqbN+khSVIXzy3QoeEoMXMlSKAC+NA0UKpmWKgCgCUvH2U2jcsm2yzVpK2T1ZT2GoZJX1YxlMuq5Da9pibJtTVIrR68cZf2C5flLHqPRlbAJ/zKGkGBVSVPKFuXec6clpg2njrNMyuX6sOirkFBgKkKFSBPqyMq0kCWar24FgqKR1/RQ6mNamqLjHqPCVafWOJuiRTkCUIdaNMz8vZDBtqhgV0/Xjl1O6flQuM6TYJLt++Kwfbj0yVHpFsqLCuX5YwbdU6cnk+qGCb0MMMlSKgDN4tih1VMyHlQhBYMG0A8H141JHxcxaypSenML1kyKY1l5HxT3rh3/QMbePWD8eguQxP+fn4nyTDFLVUbErKgnXj9J/ikpSMK3XXkIfILdPPjgbarp1T05V8I0UFa6LMmX9DAnoKheBpKyfYjYl5CrTFktR0VO4VnpD3MXlYqYnZyqh7wimZQ9qXU92txn74rJ+UigqboaKNGyybd3CBtMmSugr6WJUEufDYYBFuYaOxSYpRoUVfItZMSqkpvSedFk/YoqsHyr4ZlFfZdQNqq309/NIiL6AFJUi0NdNCa1g2sLv5xd//BgtbRH84JuH2IyL3pIuPTnT+OOKXVHhI/5VVYco2x/c/PZiioa4osEji1A1DXv39yS2YY1DbWKBtJNs2ylGerJT1ucVFTaJOQ03VhSuPOhBsRFSuH5IUSkMyXVULLdeqqwfds9QejIwe1Itfnz+AoysK2xaPlGakKFSBFTTRSFCUbUiVaZNrqxaDNfPBxtboOk6mtvCGFEbynt7LOvHFqPCSuhnqqOi2Y0c/thVTYMH9sBY50TfE1WAKLDqhU+wYWcbAGDqmCoAgBbuMAu9pVVUChRMmy5GhZ0H5/VkReEqEn13iomthD4XTBuNqea9R4G0vcdZQt8tPTm54Bu5fhiCIGDc8PL+HgbRR5Drpwiwhw5LRS1Orx++jor7G3je+9A0U2buclR27S1WCX3rIcuUGl1PHW8CuNRR4dw2bu429gl7nvdE4njoxU+xYWcb/F4Jl585EwdPMPr5xNe/Aeg6xPoJZjNChj1GpUCKCnetYnHVjKcJ+j0pFaaObqvMfrGxu35kMz1Zh+H+AUhRyQcxSVGxUo7NjCD2HHG0XXBrpUAQgxkyVIoAe8Cwt+dilNC3XD9iypiGfOGDUQtlqKRz/Tj3mfxdRzAtZzQ4zzE/yVeEjK7CHd0xbEwoKdd/Yx4Ond4AANA1FfHPXgcAeA8+Pmm//KSd7+Rgxqhwrh8WnyIIgN8nmYZYsqKScP2Eiu/64c9tyO+BRxbN88ACkylGpfekKvhmlNC3r1vmN663qai4NKckiMEMGSpFwGmoFKOEvhlMy1emLbCiUgxDJe4SEMqrK+ncV7baMTDkXzZZOlUrfjtV5YahsmVPB1RNR9AnY9wwSzZWdnwIvfsABH855IkLkvZbjPTkmGIZKmziD/pkiIJgusU0XbcpRX3p+vHIEgQYRmHAJ0EQBFsZfYBcP/mQHExruX6ccVChQMLtRunJxBCFYlSKgOn6kd3fjAsBry6YwZcF3k86Q0XXdTz7xhaMrivDopnDc94mr6IYKdaG6ycbRYV3+YiiAE3Vk1xGbDuCAFSEjIl9w+dtAIDRDWW2STb+6avGmKYfDUFONgKKUfBNSYxZEkVTUQkFPEn7UFQNXtH4TocZTFt8QyXol3H+KdPh80hmLJDfK6M7oqAnyhSVog9j0JKuKaFTqSpL3BcxilEhhihkqBQBNmlarp8iBtNKopn9Uuig3XSGyt79Pfjfdz5HRdDTO0PFkWLrkUTElPSBx25uI0kSoKjJmVZ8YTlmAGza1QYAGNNQZq6ntu2BumcdIAjwzDjWdb+FVVSsscfiGgI+0RZIy8bMUFTNvI9MRaUPXD8AcNTskbb/+xOKSo/pqqKJsrckKSouwbSMkMP1Q1k/xFCDXD9FwHL9FDGYlnP9pIppyBfeUOl2GCrhmDFZObsSZ9ymS2Va/v/pDZXkjsfMSEty/XDKDXsjZUGgNkNl92fGNkfOMLslO+EnhHzjMmRJNBUaNvGw1OSgP1lRYbVgdF3v02BaN1jRN3bNyU7pPaahouvQdd0WTJtKUYk60pMpmJYYKpChUgTMaP1ixqhwwbSpYhryhU8X7grbDZJ43EqhzUXJMQ0IWbJ9zuJsUrl+NE03/fh8nyBnmqe5H9WKhWGKCoM3VLSWz43tNExMOeZCZv0IgpCUotztUFQEwcrkYvdOOKqY91Vf1FFxgxSVwsEbo6qmm20JxLQxKtTrhxiakKFSBNikaaoEBc764d/AnMF3hXT/2Fw/ifgIBp9eG3EUL0u7TRf3DYCU/W0YfAyKbHP92EuRu+2nLGAvhz+qzqoHo+7fAQAQa8emHLOIZMMoH6wy+sYYe7hibwzTcEscR0fC7eP3SklGXl/hdygqNE/2Hl414X9nkijYiu0BVtaPomqGwU7BtMQQgwyVIpCUnlxgRYWflGVJSIppKBR8ZkqXowR9nFsWiWXv/rGyfuwPWTmD64c3YNwUFWccEN9TiDdUhtcEzeuiawq0A7uN7XBNCJ0UUlEBrDgVU1EJW+XzGU7Drb/dPgDMWirhKCkq+ZLq5cJdUbHu32hcNZVFUlSIoQIZKkUg2fVTWEWF354kiq4xDYUgXTBtrxUVl6wf4/9C0j5t3+Me5nyMipgqRkW1VC3+QW9z+7TuATQF8AQglNenHHMhY1QAy4BlWRzdUTdFxV7Ery9rqKSC9ftpTxhNNE/2Hv6ecioqznss4JNNTS8WV8n1Qww5yFApApojmLbQWT+8G0SSBNeYht7Q3hXFH17fjKa2MIDkYFq+OSG/LNobQyVVjEqK8ZtNBB0Pcmeap7kfrvlhSkOlxXD7SHVj06oDhUxPBiwDlikqzqwfNm7Aunc6+rCGSipY7ZntezsAkKKSDzZDxaGoOA0QjyzC67XuGXL9EEMNMlSKgKmoyMVRVBSbopJo0Jdhos+G//toL/539ed4dc1OY1ucMaJqulnoC7D3qslFUVFSZP3IGTooW+Xz7Q9nVuPDWUdF4dKgywLW5G7L+NlvBNKmi08BCpueDABe2eH6cWT9AEgq4tfZhzVUUjF9nNFagN1/ZKf0HlEQzPPH/86MOir2dT2SyBm3GikqxJCj4IZKY2Mjpk2blvTn+eefBwCsW7cO5557LubOnYslS5bgySefLPQQ+p2kOipFilGRRMGcRDMFo2YDC5JkfzuNnq6I5f6J5+v6camjAqSLUbFXpWUww8WZ9WNXVCylYkyDVZFWSxgq6eJTgOIpKiyYlsWo2BUVexG/zu6+raHiRnW5D8NqrG61pKjkB7uX+OKEopAcoyLLoi2uiRQVYqhR8IJv69evh8/nw6uvvmp7kJWXl6O1tRUXXHABlixZgptvvhkffvghbr75ZoRCIZxzzjmFHkq/4XT9ON0S+cI3JGQUojEhe2Cy2Im4o818dzgOVAVs6wA5BtOaBkSyvM0vd6I6+vxo3a2IvvP/MBajsANlqeuoyALqq4MI+mRUlnlRVWYoErquQW1hikp6Q4V3NTkzMnqDMz3ZLKHvGkzLXD/9r6gAwEHjqtF4oAcA9frJF1EUAC69n/2ek1w/NkVFtXr90PknhggFN1Q2btyI8ePHo6GhIWnZr3/9a3g8Htxyyy2QZRmTJk3Cjh078NBDDw0qQ4VNmr4iKSos3dlW+KwAjQlZJg8LlHUaDawyqrFu7oqKrusZY1RSKUJx0/WTMGg+fQ3KltU4DX58LJ6aZAwqnKIS8Mm467+/AOiWCqB3tgDxMCDJEKtHpB03b3AXosiWjwum1XXdrKPCZyc5DRXL9dN/igoATB9bhX9+YGRK0TyZH05FRUyohU4DxFBUEvdMTKXKtMSQo+Cunw0bNmDSpEmuy9auXYuFCxdCli376PDDD8f27dvR0tJS6KH0C5qug02ZTCUofNaPm6KSf2PCJEVFcVFUEvBZP3y8Sjp4IyS5jkp6RYidQ/Y9tXETAMCPCM4LvQlFtWclxR3rlwe9ZtYKAKiJQFqxejQEMb29zs8HhUlPtuINolwWRzCN66cUgmkBYPrYavPf9EafH+z8sd9ZSkVFFm0qnEquH2KIURRFpbq6GkuXLsW2bdswbtw4XHbZZVi8eDH27duHqVOn2tZnysvevXtRV1fX6/3KcmFtLvbmLkm5bZdXTwKJiUfR9MKOL/GA88iiuV1mFOnI/lw4j5FNijFFgyyLSSpFT0xxrXcSi6tZ7TPuODf8d8xO07r7uWLmnyyLkAQNavM2Y31ImOhpRvPnr0Gec765Pqs14Ulsl7+OuqYhsm2Nsb36cRnHzn/X65Hyvpaswquiama1UUkUEAp4TPWGnQ8tcT6YolJd4bftv7f3aW+pqfRjdH0Iu5q7IYpCwX93bvT1MfYV7Hj4uigSV2ma4fdK8CeyfuKqVcVW5n7/pc5gvYY8dIzFo6CGiqIo2Lp1KyZPnowbbrgBZWVleOmll3DxxRfj8ccfRyQSgddrfyP0+XwAgGg02uv9iqKA6upQ5hV7QUVFIKf1I1zvm7oaY0w6UNDxNXcak5ZHFs3t+hJqgT/gzXlf7Bh1gfUfMcYrOh6CimYdh8AHtYpiVvsUOq1rXF9n72AcSigFskd23Za/qRsA4PNKCMaa0abEIPrL8H/eY3BUx19Qu/tNVPjPgxQoM7cDAMGEO4UdoxaPoumF+xDf8i4AATVzjkIww9hDnIpRWRnI+1pWsntKFCElqr2WBT2oqbEykgKJDCCf34OKioBZx2bMyEpUl/uTtpnrfZoP86YPw67mrZDl7K57oejLY+wLmArq9Vk9nioqAqgotx9nfV05ykPGc1LySJATbtOykL9Pz38hGGzX0A06xsJTUENFlmWsXr0akiTB7zcepjNnzsSmTZvw6KOPwu/3Ixazl2JnBkowGEzaXrZomo6Ojp7eD9wFSRJRURFAR0c4p9okPVwF11giSDIeV9Ha2l2wsbW2GccqAOZ2hcRrVmt7OOt9OY+xJ2xcm55IHK2t3ejqMq6NKAjQdB3NrT3mtrt6LKOjrSOS1T5b2iMADHdMW5v9emksFqPLfVtt7dwxb/zIGP+wSdjWPRUTlWqMklvR9O4r8M8+0dyOseGE66QjjHhXO7r+ei/Uxs2A5EHouEsQrZmKaIaxR7hsp+7u7I41HVoiFqijM4J9TZ0AgKBPtm1XT8QatXdEsHNPG3TdOHY1Fkdrq+Vq6+19mg+TRxqZU15JLOh9nYr+OMa+gHlu2jqMukWSKKCjI4yesP2lrbsrDCGhKLa1hxFOFAiMRmN9cv4LwWC9hjx0jLlTURHISp0puOsnFEq28KdMmYK33noLw4cPR1NTk20Z+/+wYcPy2m8+sRnpUFUtp23z2TAS54Mu5PhYgTVJEs3tMn91LKbmvC92jCzWJBo3tsH2U1nmRWtnFJ3dMXPbfABtT1TJap9MbZJlMWl9dq5icWv8cUXDoy99hpkTak3pWxQFxPca8SlCw2QIO0T8OzoZX5bXIPrZPyEddBwEQeDOUWK7B/ah8y93QW9vBHwhBE68EuKIaVmNmy90By3/e41V4Y3GVLR3GcZh0CfbtsviFKIxFa0dxsQVCniga+4B07nep/kwc3wNvnnyNEweWdln+wT69hj7AhajYt6romA8/J0hbboVaxWOKuYEIejFe+4Vi8F2Dd2gYyw8BXU0bdq0CfPnz8fq1attn3/yySeYPHkyFixYgPfeew+qak1y77zzDiZMmIDa2tpCDqXfMB8i4IJpi1SZ1hZMm6FXTjawdGRW34PFlFSVGbIzX0afT13OtjJtqhoqgNX7R1Gsp/SmXW14d10T/vKv7ebk7JFEQxEBIA2bDFkUsDY2EZogQzuwC1oidoWdh+rYPjT/9Vfo+P0K6O2NEMpqEfzSDyCPmJbVmAF70GhBCr5xgZE9LsXeAMstoGqamZpcEerfQFqGIAg4Zu4ojOaK5xG5IzqzfqTkrB9BMH7nPlaZlrJ+iCFIQQ2VSZMmYeLEibjllluwdu1abNmyBXfccQc+/PBDXHbZZTjnnHPQ1dWFH/zgB9i8eTOef/55PPHEE7jkkksKOYx+ha8aKZll7YvT68dmqIgFMFRU96yfmvJkQ8Xe6ye7OipmVVoXqY99xgfcsv2198TMY64QOqF3HwAEEVL9RIiigLDuQ0vlDOP7698w9zXDswsLtj2Mzg/+DsQjEOvGI3jGCkjVI7MaL6PQlWn59ORul/L5AFdpWNHMtPCKfk5NJgqLMz2ZqYr8PeaRRAiC4Jr1Q4YKMVQoqOtHFEWsWrUKd999N6666ip0dHRgxowZePzxx81sn0ceeQS33XYbzjrrLNTX1+P666/HWWedVchh9Ctm6qAkFKRarBuKWfyMq6Mi578vpqSomlGEij1Aq10MFXv35EIoKsmGFkuHjsZUs1ruSHUfAKPsveDxmQ/73dXz0dD2EeJbVsN32FcQj2v4YuA/EAAEJs6BNOuLQMNUCELutnmh05O9XHpyj0tDQsBKT1Y13VRUyvo5NZkoLOxeYka/aKYnW+uw3wpf8I0q0xJDjYLHqNTV1eGOO+5IuXz27Nn43e9+V+jdlgz8Q4Q9SDRdh6bpBXsDcnX9mHU38i/4Zvw72VBJWUclR0NFdlFUnAXOAKCLC0xuS2QMDdf2AgCk4VOMvxPfa/WPhVg9ElrrHkTXPIfaSB3Gyvuhih40fOm76IjJvfapFr7gm1UOnaklQYei4rEpKqVR7I0oLOx5YMaZJX7D/D3GfhfsnolRrx9iCDJ4E777CfMhIgi2CbmQcSpsH3wZereJPld4t0ssrprGSFXCUIlxAbfxXrh+0ikq/MTM4A2jA8xQiRsNE6VhCUOFdU/WdfiOWGZs47PXsaDzVeN79YdAClVmNb5UCEVSVGKKii27jU7Eo+rtQejMAFNVnXP9kKIymDBdP2lK6LPfCqta3BmOWTEqVHCPGCKQoVJgVK68PW9IFNL9Y3USTi6h76wmmwsxPkCWU1TKgx7zIcqMB1uvnywr07IHsqvrxyVGhTdUWjsiqBa7UKW0AIIAeZQRk2IaKqoOeeRBkKceCUBHlXoAmi7gwOjFWY0tHfzEUQi5nRkqHd1x7GruAmCv+ApYmUFx1YpRIUVlcOEMpnUzVNjvojJRR6WjO2b2+iHXDzFUIEOlwNhdP7yiUjhDxa2ENh/T0Bs0Tbd9NxZXTaPBK0vmGx2LU+ENolhcS+pe7IaSQlGJb12D2gMfAtBt7pluzvVzoDOKgzx7AABiwyQIfiPjxDRUEvv3H/41CH6jzscHsXFAWe+rHTMKH0xrV79G1YeSMnrMrB9VQxeLUQmQoTKYkBwl9M0YFSFZUWFds9u7Y5T1Qww5yFApMAoXPyKKguk2KGRjQjPrh1NU3FwnueD8XiyuQUnErHhk0Wao6Lpui1EBsguojbtk/WhdBxB59UGM3vg7fC34b2iKZZx0cYXW2rqiOMhjNMOTx8w2P3dmVgn+MviXXIqt4nj8JTzfNR4mV2yunwI2JWQc5FBTALvC1Blmigq5fgYTYpLrR7R9Dlj3ATNkY3HNLCpJigoxVCh4MO1Qx/m2I0uiUfCtoIZKIiiVd0lwMQ29IabYDY1YXLXFlIQ4Q8XNGIrG1aSAUCdmMC2nqCjb1oJVuFrk34xR0TD02CwI3oDN9aOrCqZ5jEBaeSxnqIjJtWrk0QfjBakHB7ROVzdTrvDGSSFdP4zp49wMFaspoen6IUVlUCE5gmnTKSp+rwyfR0I0rqKVVYwmQ4UYIpCikge6rttSdgEkpQ6mc8loupV6mgturh8+pqE3JCkqihVM65FFs85Hd0SxqSlMHcgmoNY0fCSnoQL0DJuLiC5jrL4bPX9dCT0WhhLuxhG+DRgvN2GS3ASfoCAqhSDWjjW/73T9mNtlxlyhFZVCGCqc8SQAmDa2KmkdNu6YopoGG8WoDC4qywyVZPs+I6Ca3ctuv2vAcv+YlWwpmJYYIpChkgevrN2FK+//P6z+rNH8THEYEZJZiC3ZUHnyb+tx9QNv4fPGzpz2my6Ytrf9F9xcP7xhEUw0PQxHFVvwH1NRsnL9cK4kANC6W6HuM8rhdx50Jh7oOAlh3QetaQt6/vQTXOP9Hb4SWo3vlv8NXw4Z1Y73l0221UKRUhiC8QIaKvbKtHlvLlHAy9jQ2OHlSTVUAGvcHV0xs6J6iBSVQcW8KfUAgLZEG4V0wbSAFVDLIEWFGCqQoZIH2/Yab0J//td2sx+M0/VjxVAkGxCfbW+FrgO7m3NrLMYXlWO4Zc3kgjPmJBxTzP14ZBEBzlCJcQYH68GTXYyKtT0AULa/B0CHOGwypPIa7FJr8aR6CuALQWvdjaAYQ7sWgCgAwyTjXLdVTLFt03L9uCsqHjn/h3mhY1QAS4lyi08BLPcYk/mDPrkgRhdROhw8ocY0WAHrxcMtPRlIbqEgFcJqJogBAN3pecAk2D0t3Vi3oxVAsltGTqGoROMq9ie6CUeV7NJ7GWYdFZFXVPIr1+9UVPgu0F5ZMg2Vnqhi9vnxyiL8XqaoZHb9OLN+lK2G28cz4VBzEt6l1CB42nKo4xbiya4j8eO2c/BY59Ho1rzo1rzoqHQaKu6GoLUvezxIb2BZP6Ig2DKA8oEpVG7xKYB1PVl8Shm5fQYdPo+EWROtHmeiSwl9OY2hQooKMVSgYNo84Cfn197bhRnja7g+PMYDxopRsU+k+/b3mJI+X78kGyzXT+EUlbjDWOJTg2VZcCgqlhHg55qlZd6H5UrSetqh7ttgbH/iAshRFmOjQ6odi/Y5y/DeB2sgCMB/4uOwvm0kJEHFmd6gbZupYlQs10/+D3O3CSRfvnLsZGzd24GZE2pclzvVE4pPGZwcMrUe721oBmD9nvnbzGNz/TgVFTJUiKEBGSp5EOUKnX24uQXNbWFoenLWD5CsqOzdb7l7YlkWTGO4NiXMszKt0/XDAjhZPRgWixKOKKZR4/Xk6vox1pFlEeqedYCuQ6wbB7GsFh4lbBs/S02uq/SjuS2CKDyA7kmawFMaKokuzG4NEHOFiSiFVNrnTa3HvKn1KZcnGSoBSk0ejMyeVAdJFKByLTZ4lw4pKgRBrp+s0TQdDzz3EZ57Y4v5GZucQ34Zug68/sFu0wXhjOB3uib27O8x/x3N0VBRzBL6hWtK6HT9dCcMBbZdd0VFNNvPZxdMyykqBxKl8Osn2sevaNB13TSUqsv95j4Au4rE/583VHRdt7J+Cpie3JdvsE4liFw/g5OgX8aM8YaqZgbTZqmokJ1CDBXIUMmSvQd68MGmFryydqf5GZucFx08HACwdU9HUoyKlJWikpsK4jSGgPybEjrrqDBDgT0oAwljoSeqmuP1ylJOMSp8MK263ziPYs1o8zPAqKiiarrpegr5ZVRwk7RTITGDabnj5o2WgioqfZgOmqyokKEyWDly9ggAwOh6o9pytsG0pKgQQwVy/WQJi8EwupdqkETR/Ky+KgAAiEQVl4Jv7jEqezlFxWkkZEJ1U1TydP3EHcYS61zMshIKkfXDB9NqB3YBAMTaMUnHoqiaaSiVBTyoCHrR3BZJWg9wd/3w6lAhFBWhXxQVZ4wKuX4GKwumN2DKd47A5PG1aGvrsRsqUmpDhWJUiKECKSpZEuUUg2hMha7rpsuGdReOxNTkrB8XRUXVNDQe4AyVXF0/ropKnq4f1T1GxVRUfJZywgwBryzCn0izzcZ9xWJbfIhC7z5gHEP1KNt+2DGwQnqhgMc2SSe5flwMFd5YK4SiwpQUoT9dP6SoDGrqqgK27DIGb2hXBklRIYYmZKhkSZRTHMJRFYpqNfGrSlSY5GuPOGNU+MmzqTVsm1ijubp+XOuo5On6ibvHqHiSYlRU0yjxeKTcgmkTBk5ZpAkAIJTVQvCFABgPXZFr0sb2H/LLZkVOwEVRcUnLVrhg40I8zNm80b+KChkqQ4VUiorPK9njtaiOCjFEoDs9SyJxS1EJxxSbglBZZigq4ajq2usHsL/x824foPdZP2zbuhKFv20bAL33rp+E2sEm43DUXkWW1f3QuEBXnyzCn/g8q/TkxNgC4X0ArPgUhixbbQC6w4kYFYeiIotORSX5/BayKi0A1zfdYuMcOwXTDh1sSqnDdckH1JKiQgwVyFDJEn4ijsRUM3iU74OjqJoZv8EmULfKtCyQlsV/5Oz60eyun+g7v0PVv+7HlwLv5e36cboY2Bud1yOaE3V7t1Hy2+ORcuz1Y4zN32O0HJBqxrjuS+EUlTK/EaPCcD64LdePdX7N5ocFqKECWNkVfamoOJspUozK0MHm+nHcw3ycCsWoEEMFMlSyhHfPRKKKabj4OPcHAFMJSBejsqfFUFTGDis3tu3SjTgdfB0VXYkhvunfAIDjAp9hvLYz3VdTwlw/SYZKwhARBAEBn/Hv9kRvEi8XTBvOQVHxdRldkJMUFS4g2Bajko3rh49RcenSnA8sNqUv32CdkxBl/QwdeOHOabDaFBVqSkgMEchQyRI+mDYcU82YDL9XgiSKZkdcVqiMTaBmjIqWrKiMTxgqubt+LNeG8vmHQDxsLvsv35vQwh05bQ+wjAimDjF4HzmLUzEVFc5Qycb1oygqAB1y1x4AyYYKeyjHVc2Rnpz6LdJKT04Opi1EIC0A1FX4jb8rAwXZXjbwE5QsCTZjmBjcCIIVr+W8h0lRIYYiZKhkSYQzJiJRxfw/C25jsRosfsOZnswUFV3XsTeR8TNueC8NFS5gV0moKdq047BXqUSFGEb45fuhRXLryMzSk50devkJk8WpdHQbjfJGd3+Kyj3vYLS0H7FYLPM+FA01YjdEJQqIEsSq4bblMu/6caQnO9dhuLl+lALHqAyrCeL2iw/HZWceXJDtZQM/CZUFPAXrMUQMDNjzI0lRCVKMCjH0IEMlS2IxLusnppoKAnvTZQXRmBIgsdobLJg2MXlG49Z3R9SGEp9ldv3ouo7dzV1QVM2sTOtRe6B8/hEAQJy6GL/uXowezQutaQt6XrgVWtu+7I8vEVuTzlDhFZXpnt2Yset5hD76Ha6rfAnf8zyN6Ad/hh4LIxVxVcMIyWjeKFaNhCDa1RtmWHSFreypkN+D8hBvqNgfzsxQ5IObCx1MCwDDa4Jmcbu+QBAE81gpPmXowRJ6nPdwRZk3aR2CGOzQrZ4lfNYPH6PC6oiwScwsPS9qUJu2YHhkB6bJe6AmDAGWTSMKgplymk3Btw82teCHj76LZ/+5xTR6yls+AnQVYt04yDWjsFetxn0dJwNlddA7mtD9wi2GaygLzNThLAwVRdVwcuA/AAC9rAE9mhchIYrYmufQ/dvrEPvsH9C1ZOMrrugYyQwVh9uH31dTq6E4yZIAr0dEWUA2/fbObshsvEbKuLFPhfX5KVCMSn/BjFyqjQcDPgAALi9JREFUoTL0kLJRVEhlI4YIVJk2S5KyfkzXj3EKWaApc1nM3/c8erZsxOEADq8AtjS2A5iCcFQx1/fJIgJCDOG4F5qup33w7G4x4lq27Gm31Ia97wMAPJO/ADHxQGvUqiB+8UbgzV9Ca9yM8N/ug3f+GfAecmZa90E6Q0XXdcTefxFndfwfwvJcAMAEuQWaIMN7ynJcveoDzPduxzdHbobesQ/Rt55EfMP/wX/EuZAaJgFg/XdUHBLaDgDm5zxTRldi294O/ON9o2ptKOHykAQBp39hPNq6YmbNGkbQJ0OAUXq/OxxHZZmPi1EZ2A9yjyQiCpVqqAxB2LMglaIiCgK5A4khw8B+5exD+BiVcMye9QPwiooCERrqerYCAHp8dQCACR1roe7fiXAiKLfWF4f4yp24ter3mCrvTWoK6IQZQE2tYaiqDi/i8LbvAADIEw+1xTSo3nIET7sBnhnHAQBi7/8J8XWvp90+azSYHEwLRN/6NWLv/RFVSgsuKX8NXw29AwBoHXEYfJU1AES8F5sI7dSb4DviXMATgNa8DT0v3IrwKz+H1tEERdUwTd6LEXIbIPvgmfqFpDEcO38UBAD7O4wYmDK/NUGfedREnP/F6UkPZ1EUTHcVyxSKFzjrp78wXT/UOXnIwZ4nzt9jTbk/sZyCq4mhw8B+kvchMU5RCUcVs26I3wymNf6OKxqGSe2QdAXw+LFu9nfxQWwcROiIvv0UwpE46sUOfEt6EXrzFngEDV8OrUYsEk27f2aodPbE0RmOYYx8AIKuQQhVQyyrtcU0KKoGQZLhP3IZvAu/AsCotaJ1NKXcfipFZXbTXxFf908AAloDYyEJOmqlLsR1ER3jjoUoCPCy6rSKBu/BxyP01TsgTz0KgABl21p0P38TYi07cYx/HQBAmnokBG8waQzDqoOYNanW/L/zIZ2KJEOlCDEq/QEbPykqQ4/zT5mOZSdORUO1/XdSXe7DBadMx0WnzeinkRFE3zOwn+R9iC3rJ2aVkfeZwbTWpDpG2g8AkOrGIej34oWeQxGHDHXfRgz/1134fuWfUI12COV16NT8GCZ1QPnstbT7Z0G6gBGPMU5uNvbBuVAkrg4JwzvnZEgjpgFKFJE3HoWuuys3rDKt3yubsvMwsQ0j2z8EBAH+4y7Dp5O/hZfDs6DqAl4Nz4JUZrSnZ37zfYmKu2KwCoFjLkTwy7dArJ8AxHqg/v0ezPDuhqYDvpknpDzO4w6xYlecgb2pKAsY554ZKoVOT+4vmKFCVWmHHgePr8Gx85PjuADgqNkjMXdKXR+PiCD6j4H9JO9DbDEqUcWqo+KxKyoAMEY2DBWxbjwCPhltWgjviIcAAHw9jRAFHXvk0QiesQIvxw8FAEifvgStpy3l/ll9FsZ4ucX4HmeosIk5ztUUEQQR/qMvBGQf1L0bEPvP31y3H+M6G7OKuYv8mwAA8ti58ExaiIDfg7+G5+GG1q/hb5E5ZqDfrImGCvL+xmbbNqWaMQh+8VqIVSMgRIzaLuuUMZAcack8B0+owbAa4y0y5M9ugmauEdNQGWyuH8r6IQhiCDOwn+R9SNQWo5Kcnuy3KSqJzsD1481MmTfjs+A7/GvYMuZL+FHrOfhn3dchBqvwqTgd25U6CEoEkVcfTJney1w/BjrGJxQVcZhlqJiuH0e8i1jRAN+irwMAYmv+AGXXp0nbNzsie0R4PRJkqFjo3QIA8Bx0DAAr6ycGj7kuAMyfVg/AyExSHdk+gr8MgS9eC81fCQB4W53lenzmWAUBZx45AaIgYPq4qrTrMkIORcVy/QzsYMOJIyvhlUWMT9TbIQiCGIqQoZIlUZvrx1JUfI46KiI0jJIThkqdZah0RzV4Z5+MHeXz0K6HzPU9Hhm/614ETfZD3bcR4f+9x9VY4V0/VWIPKsUwdEGEVDfO/NwsmOaSGuyZfrQRN6LrCL/2ILQOu/oRVzRUCD0o++wFTJKbMMe7AyExhpi3EtJow7hgx2JuM5EqPHVMJcoCHnSF49i0sz1p32J5HTqOWY6720/BLnFk0nInh80Yhl9eezS+MHNExnUBK67Gcv0k0pMHuOvnvJOn4f7vHoX6qr6riEsQBFFqDOwneR+h67ppmABGjEhSjEpiEh8mtcMrqFBFH4TKYWY113BUha7rZnoyq2Trk0XsUavROO8SwBuE2rgJPS/daSuDr3MdiwFgvJQwMqpHQ5B95ud8ZVcngiDAf+QyI2Yk2o2e/70bWtcBc3lc0XBO6F34Nv8D50kv4qzgWgBA+/AFEER7B2UGaxsgiaLpM3/P4f5hxOQQPlfrsjYecqmBkmyoDA7XjyAIZlYZQRDEUGVgP8n7iLiiQeeaEvOKit8jJ/42TiULpO0JjYAgiGZ9FU3XEYtrZrYQM2xYxkxncBSCp10P+EJGau+ffgKtvTGxP9XWdI/Fpwh1E23jNF0/mnsHZUH2InDCdyCEaqC370PnC7cj3t4EXddRpR3AbM/nxnoAysUINF1A98jDzO8HfPZJ08sZAodMNdw/729shqYn71/hYmAKDTNUWENI5sYa6IoKQRAEUQRDpa2tDT/60Y+wePFizJ8/H1//+texdu1ac/kFF1yAadOm2f4sW7as0MMoKFFHLx5FtRQOn1eCsv0DTPr3zVgaess0IsJlRsS+zyOZVVV7ogp6EpVpmevHl5i4Y3ENUt14hM5YAaHcqCzb86efQG3ZYVa7DYkxiNDMjB/RUTQtnaLCEMtqEfzS9yGU10PraMKeJ3+IeOs+LPF/AlEAMHoOXvKdjl1KNV6LHAwhkdkDpHb9AMCM8dXweyW0dkaxbW9yU8R4ETNxnIrKYElPJgiCIIpQmfaaa65Bc3Mz7rnnHtTW1uKpp57ChRdeiD/+8Y+YOHEiNmzYgJtuugnHH3+8+R2Pp7TTL1ngrCwJZvxDW6IxX3nreoTXPgJJU7HQt9X6TsJQEQQBAa+Mnqhi1F+JOhSVhLQfTaQHi1UjEDxjBcL/ey+0/TvQ85f/QXzWV/Gtsn9ijvdzxHQJMhIT8bAUhorqrqgwxPI6BL/0fYRfuhNq2150/+l2LPAaxoV37qnY+1YYf99bDQBY7lJCn8GCaQHDaJkzuQ6rP2vEi29tx1X/NdtWnC3eB4pK5yDL+iEIgiAKrKjs2LEDb7/9Nm666SYceuihmDBhAn74wx+ioaEBf/7zn7F//37s378fc+bMQX19vfmnqqqqkMMoOKyGSsAnm5NzLK5hsrwPFWsfBTQVSv1UxHRLYYiWWzUQAmacimJWpmVZQsxQiXGNCcVgFYKnL4c4bDIQ60HZe49jjtdwy3gFFaKgo1UNQk7qPmwVfMuEGKpG+Znfh7dhLBBuhyTo2BgfDu+IKUkGCMPvlcBMD0FIbjP/pSPGQ5YEfLx1P975rNG2rC8Mle5BVkeFIAiCKLChUl1djYceegizZlkpqEKiJ0VHRwc2bNgAQRAwYcKEQu62aER6jOwb5voZ52nFSK9R1KxcCOP8sjchaArk8fOBJVdhVedxCGsetKhlUENWQSbeUIkkXD/BRLyHL2EUON1LgjeI4CnXQRp1MADgk9ho/Nb/Dfxvw4V4ousorOo83izwxpBdCr6lQwxWYsTSW6DXjIOmC3g1NheCIMDLGSe8YSEIghkE7JWlpHL2I2pDOP0I49r+9tVN2N3Sjf3tEaiaVtSy9qahEolD03R0ha1+SgRBEMTApqCun4qKChx99NG2z15++WXs2LED3//+97Fx40aUl5fjlltuwdtvv41gMIiTTz4Zl19+Obze/IpaFXoC/PCPT2HUntcQmfc1KCMWYrZnBy6U3oAiifiDchhmez5HuRiBUD0KZSdeDlkVsUUZjpvbz4GqC7jMK5tjYqXgY4pmZv2Egl7IsmgqK4qqJR+DHID8pevwf++sxyOv7cEho+oRGlaOD9bHIUtC0vqehNGj6dmdD0kSIQVDiJ+wHD9Z9RoUX6UxJm6C9/sk27aCPhnhqAKvR3Tdx+lHjMfa9U3Y2dSFHz6yGgAwcWQFjp5rpCV7Zang16qy3Mh80nXDhca6L4+oC5nGnNOoGywM9uMD6BgHA4P9+AA6xmJS1O7J77//Pm688UaceOKJOOaYY/D9738f0WgUs2fPxgUXXIB169bhzjvvxJ49e3DnnXf2ej+iKKC6OlTAkQNtMRHjBA2hD38LRDtxbtnbAAAZGr4e+jcAIK6LGHP2NQjWV0PTdAgCENYNg6uyImCOqSIxkUKSTDfS8IZyVFeHUJFoMiZIYspjiHorAexBTWUAk8bUANgKj5y8fjBRodXrk3M6Hx6/D+16CDVeyRhTmd9cVldbhmqu30h5yIv9HRH40+zjmm8cglsfewddPXHEFA1b93RgwcGGmyoU9Bb8WgFA0C+jJ6IAkoSW9ggAYNqEOlRUGDVI2N+DlcF+fAAd42BgsB8fQMdYDIpmqLz66qv43ve+h/nz52PlypUAgFtuuQXLly9HZaVRpXTq1KnweDy4+uqrcf3116Ournf9KzRNR0dHT8HGDgCNdQvxr91b8AX/ZpSt+zMgADulsdgrjcSh0XcgCsBfIgvwLV89oq3dAIwMH5a2HO6JoTXxuScRy9FyoBvhROG2eMRYrqnG+p2dUXN9Jy2Jz2VRQJnPsGRlSUxaX0+4fDo6Iym3xSNJIioqAmhtDye2b2xTV7maMd1RtMIKzmUpybIopNxHbZkH9115FADgmgfeQkt7BBu2GzVbdE3Lamy5EvJ70BNR8NHGJqiaDo8sQtBUdHSEUVERQEdHGGqWLrGBBLuGg/X4ADrGwcBgPz6AjrE3VFQEslJnimKo/OY3v8Ftt92Gk08+Gf/zP/9junVkWTaNFMaUKVMAAPv27eu1oQKkT8ntDRUhL37XczjGVAoYE92ERrUC/1d9GqKCH2+3VKNa7MImaQq+ye034JOtwnC6bo6JFYXb3x4xp3yPJEJRNDPgMxxTUh5DR3cMgBHXMqouhBMXjMGI2mByqfyEQRSLq3j9/V3Yvq8TAFBX4cdJh401mw06iSbcUR7ZGBOf1ivAfm5ZywA2/kyMqA2hpT2CHYmxyKJQ8GsFGO61ZgCbdrYBABqqA9BUHapg7EtVtaLst1QY7McH0DEOBgb78QF0jMWg4IbKM888g1tvvRXLli3DD37wA1vA5bJlyzB69Gjccccd5mcff/wxPB4Pxo8fX+ih5EVlyAsNIv7mPQlHjTgET36gYdboEAIAPlTqsR31qK2wnz42iQOW0QBYFV0PdBouCUkUzCBVt6wfJ6yQWSjggSAI+NpxU1zXYwbGnpYePPfGVtuyCSMqMH1ctev3Yo5AV6/HPZiWPxaPJzsf5YjaID7euh+tnVHbPgoN6zC8ZY+RZt1AZecJgiAGBQU1VLZt24bbb78dJ5xwAi655BK0tLSYy/x+P0466STcfvvtmD17No488kh8/PHHuPPOO3HhhReirKyskEPJm4qQoQK19qjYO2YauvVt8HkkmwHid2SV8I0JeTmLZf0c6Igk1rMyZrxmwTd71g8PK/hWlqGbMEtP/mSbUR13WHUAoihg7/4eNLb2pDFUVNtYWHqyWwpygMv6yYaRdfZ4lGKlDLPMn11NXQBgdmAmCIIgBjYFNVRefvllxONxvPLKK3jllVdsy8466yz89Kc/hSAIeOqpp3D77bejvr4e559/Pi6++OJCDqMgVJUZAbDtXTGrr49HgsR15PU7+rDw6bD8BG8ZKlHb/9k2gUyGSkJR8ae/XExR6ewxDJvDZgxDVziOvft7zABTN5w1TnwJI8Qji0kpyGzs2dZDGVFrNxiKUUcFsIw41mqgoZoUFYIgiMFAQQ2VSy+9FJdeemnadZYuXYqlS5cWcrdFgSkqXeG4aSj4vZItfsPndRgqvKJiM1SM9VisCW+omJVp07h+WGn4UCCTomI3Ag4aV41te43YkOa25I7MDOZ2YioJU1TcVBN2LN6sDRWHolIsQ8VxboZVk6JCEAQxGBi8Cd95Uhb0mG6elkRWjM8ruaohjEwxKiyQNsCtxwq+MfeLE75zsnMyduLh1B6PLGLiyErUVfoTx5BGUUlk+TAjwsMpKk6mj61G0Cfj4Ak1ScvcKAt4UBG0xl0010/QaaiQokIQBDEYKGodlYGMKAioKvPiQEcUTa0JQ8Uj2YwTv0NR8ftSKSpyyvW8GVw/0bjVOTmUMUbFMgKmjK6ERxZRnwgqbUmjqMTjdtePmdnjYqhMGlWJB646KskllI4RtSF09LSl3GYh4I04jyyiitWuIQiCIAY0pKikoSpR+Gx/IgjW55FsAbM+r90AyRSjwgjyhorMSui7u35Yxo8sCbYePG7whsr0sUbgbF2VcQwdPXGzuaITlvXDxjJxZAUOnd6AUw4f57p+LkYKYFSIdRtjIeHdYg1VgZSp2ARBEMTAghSVNFRV+IA9Rml2wFAaeGPEGUzLGzG86yfg7b2iwjJ+Qn5PRgNB5lw/ByUyfEJ+DwKJsvctHRGMqkuuCmsF00qJ7Yi4/MyZafeVC3xAbbEUlXLeUCG3D0EQxKCBFJU0sMwfhlNRcbp++NgTSUxOT3Zbz8z6UTRoug4nXVnGpwCWWuH3Shg/otz8vJ7FqaRw/7D4mGIZESO5gNq+cP1QIC1BEMTggQyVNFQ74hx8DkXFmfWTKkbF75PAayH2rB/rEsRdKv1lm5oMANUVxnhnTqy1GUq1GQJq43G766fQ9IWiYnP91JCiQhAEMVgg108aqsr9tv8nx6hkl/UjCgL8PgnhqKFc2AwVLgW4rSuKB5772AzeHVkbxMIZwwBkTk0GgIPH1+CGpfMxut7u3mEBtalSlGOOOiqFprrcB7/X6INUrKwfn0eCVxYRUzQMo6q0BEEQgwYyVNLgzBzxeyWbMZJU8C1FHRUAiTgR1dwOQxQFyJIIRdXwn837safFatj3eVMXmhLGRaaMH8AIcp06pirp81QpyuGogkBUQbzIrh9BEDBnch0+2tJiC6wtNFPHVmHHvk6MG16eeWWCIAhiQECGShqSXD8eCT6v4cbR4VLwLYXrx1qWXJnW2K5hqGzZ3Q4AWHhQAw4/eDh+9uxHZpPDbGJUUlHHUpTbLUWlvTuGW55Yg0hMMY0grye5wFuhuPj0GVBUzQzYLQZX/dccqKpeNIOLIAiC6HvoiZ4Gp6Li80oQBcE0UJKzftxdP4DdOHEaKsxA2LLHMFQmjqzE3Ml1OHruSHOdUKD3NqWpqLRZispvX92I1s4owlHVVFqK5ZYBDFWlmEYKYLjYyEghCIIYXNBTPQ3VjhgVZlAwdcMZN8L+L0tCkqIStBkq9gmbbZf1AhrTYDRo/K9jJqOyzCjlXxH09vo4mKHSE1XQE4njw80teHddEwQBWHLoGG5cJLARBEEQpQXNTGkoC3ggiQJUTYfXI5pFxL5xwlR8vq/TNCj49ZeeMNXWHZlhU1QcdVV8DhWAbTfol3HVl+dg9bpGLDioodfH4ffKKA960NkTx9Y9HXjq5Q0AgJMPG4fL/2su5kyqwfodrZgx3r27MkEQBEH0F2SopEEUBVSEvGjtjNrcPHMn12Hu5DrX7xx3yGjXz9O6fjiXUXW5zxaPMm54eUGCQ+sqA+jsieNnz30ERdVRX+XH2UdPBADMm1KPWRNq894HQRAEQRQacv1koDLRRdkZOJsrvLvH6frhFRWnSlMo6hOl9BVVx4jaIK76rzlJTRUJgiAIotQgQyUDFcxQ8eQnPrEYFSmRjszDZ9sUy1CZMroKAHDotHqs+OahGFFbvDRhgiAIgigU5PrJAAtm9Xnzs+mYuyfgk5PiV/rCUFkyfxQOmVaf1BaAIAiCIEoZUlQyUBkyJnZnKnKusABap9sHMOqoMIplqAiCQEYKQRAEMeAgQyUDVeWGopJv6i5LXQ66VJhlZfS9skgN9QiCIAiCg1w/GTh8xnBs39OJxVzxtd5w0LgqHD13JOa4ZAsx18+o+rKkQnEEQRAEMZQhQyUDFSEvvnXqQXlvxyNLOO/k6Sn3AQATRlCPGoIgCILgIUOlBDhq9gj4PCLmTa3v76EQBEEQRElBhkoJEPDJOHruqP4eBkEQBEGUHBRMSxAEQRBEyUKGCkEQBEEQJQsZKgRBEARBlCxkqBAEQRAEUbKQoUIQBEEQRMlChgpBEARBECULGSoEQRAEQZQsZKgQBEEQBFGykKFCEARBEETJQoYKQRAEQRAlCxkqBEEQBEGULGSoEARBEARRspChQhAEQRBEySLouq739yDyRdd1aFrhD0OSRKiqVvDtlhJ0jAOfwX58AB3jYGCwHx9Ax5groihAEISM6w0KQ4UgCIIgiMEJuX4IgiAIgihZyFAhCIIgCKJkIUOFIAiCIIiShQwVgiAIgiBKFjJUCIIgCIIoWchQIQiCIAiiZCFDhSAIgiCIkoUMFYIgCIIgShYyVAiCIAiCKFnIUCEIgiAIomQhQ4UgCIIgiJKFDBWCIAiCIEoWMlQIgiAIgihZyFBxQdM0/OxnP8NRRx2FuXPn4tvf/jZ27tzZ38PqNW1tbfjRj36ExYsXY/78+fj617+OtWvXmssvuOACTJs2zfZn2bJl/Tji3GlsbEw6hmnTpuH5558HAKxbtw7nnnsu5s6diyVLluDJJ5/s5xFnz+rVq12Pbdq0aTjuuOMAAL/85S9dlw8UfvWrXyXdc5mu2UD7nbod4z/+8Q+cc845mDdvHpYsWYL/+Z//QSQSMZe/9957rtd19erVfT38jLgd34oVK5LGvmTJEnP5QL+Gy5YtS/nbfOGFFwAAqqpi9uzZScsfeOCBfjoKO5nmh3//+984++yzMWfOHJx88sl46aWXbN+PRqO4+eabsWjRIsybNw/XXnstDhw4UNhB6kQSDzzwgH7YYYfpr7/+ur5u3Tr9W9/6ln7iiSfq0Wi0v4fWKy644AL9tNNO09esWaNv3bpVv/nmm/XZs2frW7Zs0XVd1xctWqQ/88wzelNTk/mntbW1fwedI//85z/1WbNm6Y2NjbbjCIfD+oEDB/TDDjtMv/HGG/XNmzfrzz77rD5r1iz92Wef7e9hZ0U0GrUdU1NTk/73v/9dnzZtmnkM3/3ud/Xrrrsuab2BwG9+8xt9+vTp+rnnnmt+ls01G0i/U7djXLNmjX7QQQfpv/zlL/Vt27bp//znP/XFixfrN9xwg7nO008/rR9//PFJ17XUjtHt+HRd17/85S/r99xzj23s+/fvN5cP9GvY2tpqO7bGxkb9G9/4hn7qqafqXV1duq7r+ubNm/WpU6fq69ats63Llvc36eaHzZs367NmzdLvueceffPmzfojjzyiz5gxQ//Xv/5lfv+GG27Qjz/+eH3NmjX6f/7zH/3MM8/Uly5dWtAxkqHiIBqN6vPmzdOffvpp87P29nZ99uzZ+p///Od+HFnv2L59uz516lR97dq15meapunHH3+8ft999+ktLS361KlT9U8//bQfR5k/Dz30kH766ae7Llu1apV+5JFH6vF43Pzs7rvv1k888cS+Gl5B6e7u1o899ljbhPbFL35Rf/zxx/tvUL1g3759+iWXXKLPnTtXP/nkk20TQKZrNlB+p+mO8dprr9XPP/982/p//OMf9YMPPticqH/84x/rl156aZ+OORfSHZ+mafrcuXP1v//9767fHQzX0MlTTz2lz5w503wJ1HVdf+mll/T58+f3xVBzJtP88MMf/lD/8pe/bPvONddco3/rW9/Sdd04N9OnT9f/+c9/msu3bt2qT506VX///fcLNk5y/ThYv349uru7sWjRIvOziooKzJgxA2vWrOnHkfWO6upqPPTQQ5g1a5b5mSAIEAQBHR0d2LBhAwRBwIQJE/pxlPmzYcMGTJo0yXXZ2rVrsXDhQsiybH52+OGHY/v27WhpaemrIRaMVatWIRwOY/ny5QCAWCyG7du3Y+LEif08stz49NNP4fF48OKLL2LOnDm2ZZmu2UD5naY7xm9961vmNWSIooh4PI6uri4A6e/rUiDd8X3++efo6elJeV8OhmvIc+DAAdx333247LLLbMdcytcw0/ywdu1a2/UBjN/he++9B13X8d5775mfMSZMmIBhw4YV9BrKmVcZWuzbtw8AMGLECNvnDQ0N5rKBREVFBY4++mjbZy+//DJ27NiB73//+9i4cSPKy8txyy234O2330YwGMTJJ5+Myy+/HF6vt59GnTsbN25EdXU1li5dim3btmHcuHG47LLLsHjxYuzbtw9Tp061rd/Q0AAA2Lt3L+rq6vpjyL3iwIEDeOKJJ3DttdeiqqoKALB582aoqoqXX34Zt912G6LRKBYsWIDrrrvOPM5SZMmSJbZ4BZ5M12yg/E7THeOMGTNs/4/H43jiiScwc+ZM1NTUAAA2bdqE6upqnH322WhsbMTUqVNx9dVXY/bs2UUfezakO76NGzcCAJ566im8+eabEEURixcvxtVXX43y8vJBcQ15Hn74Yfj9flx44YW2zzdu3AhFUXDhhRdi/fr1GDZsGM477zycccYZxRpy1mSaH/74xz9i+PDhtuUNDQ0Ih8NobW1FY2Mjqqur4fP5ktYp5DUkRcVBOBwGgKRJ2ufzIRqN9seQCsr777+PG2+8ESeeeCKOOeYYbNy4EdFoFLNnz8YjjzyCyy67DH/4wx+wYsWK/h5q1iiKgq1bt6K9vR1XXHEFHnroIcydOxcXX3wx/v3vfyMSibheTwAD7po+88wzKC8vx1e/+lXzMzYhBAIB3H///bjtttuwdetWfPOb37QFZg4kMl2zwfY7VRQF119/PTZt2oQf//jHAAyDrLOzEz09PVixYgUefPBB1NXV4dxzz8XmzZv7ecSZ2bhxI0RRRENDA1atWoUbbrgBb731Fi6//HJomjaormFXVxd+//vf48ILL0yatDdt2oS2tjYsW7YMjz76KE466STceOONePbZZ/tptKlxzg9uv0P2/1gshnA47PpCW+hrSIqKA7/fD8C4COzfgPFwDAQC/TWsgvDqq6/ie9/7HubPn4+VK1cCAG655RYsX74clZWVAICpU6fC4/Hg6quvxvXXXz8g1AZZlrF69WpIkmRes5kzZ2LTpk149NFH4ff7EYvFbN9hP6JgMNjn482HF154AWeeeabt3jzzzDOxePFi8y0cAKZMmYLFixfjH//4B0455ZT+GGpeZLpmg+l32tXVhauuugrvvvsufv7zn5tqyYgRI7BmzRoEAgF4PB4AwKxZs/DZZ5/hqaeews0339yfw87IZZddhm984xuorq4GYDxb6uvr8ZWvfAUff/zxoLqGr776KmKxGM4555ykZX/5y1+gqipCoRAAYPr06dizZw8effRRfPnLX+7roabEbX7w+XxJv0P2/0Ag4Po7BQp/DUlRccBkyKamJtvnTU1NGDZsWH8MqSD85je/wRVXXIFjjz0Wq1atMq1+WZZNI4UxZcoUACgp+TUToVDI9rADjONobGzE8OHDXa8ngAF1TdevX4+dO3fi9NNPT1rGGymAIb1WVVUNqGvIk+maDZbfaVNTE5YuXYoPP/wQjz76aJIMX1FRYRopgBHDMmnSJDQ2Nvb1UHNGFEXTSGHwz5bBcg0BY5I/+uijUVFRkbTM7/ebRgpj6tSpJfXbTDU/jBgxwvX6BINBlJeXY/jw4Whra0syVgp9DclQcTB9+nSUlZXZ6hR0dHTgs88+w4IFC/pxZL3nmWeewa233oqlS5finnvusUl1y5Ytw4033mhb/+OPP4bH48H48eP7eKS9Y9OmTZg/f35SbYlPPvkEkydPxoIFC/Dee+9BVVVz2TvvvIMJEyagtra2r4fba9auXYva2lpMnz7d9vm9996Lk046Cbqum5/t2rULra2tmDx5cl8PsyBkumaD4Xfa3t6O8847DwcOHMDTTz+dNO4333wT8+bNs9UVURQF69evHxDX9frrr8f5559v++zjjz8GAEyePHlQXEOGW9ApYBzPwoULzXpOjI8//tg02vqbdPPDoYceinfffde2/jvvvIP58+dDFEUccsgh0DTNDKoFgG3btqGxsbGg15AMFQderxfnnnsuVq5ciddeew3r16/H1VdfjeHDh+PEE0/s7+HlzLZt23D77bfjhBNOwCWXXIKWlhY0NzejubkZnZ2dOOmkk/CnP/0Jv/3tb7Fz50789a9/xZ133okLL7wQZWVl/T38rJg0aRImTpyIW265BWvXrsWWLVtwxx134MMPP8Rll12Gc845B11dXfjBD36AzZs34/nnn8cTTzyBSy65pL+HnhOfffaZaxG3E044Abt378ZNN92Ebdu2Yc2aNbjiiiswf/58HHXUUf0w0vzJdM0Gw+/0jjvuwM6dO3HXXXehpqbG/F02NzdDVVXMnz8f1dXVWL58OT755BNs2LABy5cvR1tbW5IBUIqcdNJJ+Pe//42f//zn+Pzzz/HGG2/g+9//Pk477TRMmjRpUFxDwIglam1tTXqBAAxF7PDDD8e9996LN954A9u3b8dDDz2EF198EVdccUU/jNZOpvlh2bJl+Oijj7By5Ups2bIFjz32GP72t7/hoosuAmCom6eeeipWrFiB1atX46OPPsI111yDhQsXYu7cuQUbJ8WouHDllVdCURSsWLECkUgECxYswKOPPmqTYAcKL7/8MuLxOF555RW88sortmVnnXUWfvrTn0IQBDz11FO4/fbbUV9fj/PPPx8XX3xxP404d0RRxKpVq3D33XfjqquuQkdHB2bMmIHHH3/czBx55JFHcNttt+Gss85CfX09rr/+epx11ln9PPLcaG5uNjN9eGbOnImHH34Y999/P84++2x4vV4cd9xxWL58OQRB6PuBFoDa2tqM12wg/05VVcVf//pXxONxnHfeeUnLX3vtNYwePRpPPPEEVq5ciQsvvBDRaBSHHHIIfvOb3wyI2LHjjjsO9913Hx566CE8/PDDKC8vx+mnn46rrrrKXGcgX0NGc3MzALj+NgHg9ttvxwMPPIAf//jH2L9/PyZNmmRW4+1vspkfHnzwQdx111349a9/jdGjR+Ouu+6yqUe33norbr/9dnznO98BACxevLjgyRiCzuvFBEEQBEEQJQS5fgiCIAiCKFnIUCEIgiAIomQhQ4UgCIIgiJKFDBWCIAiCIEoWMlQIgiAIgihZyFAhCIIgCKJkIUOFIAiCIIiShQwVgiAIgiBKFjJUCILod3bt2oVp06Yl9UTpDTfccAOWLFlSgFERBFEKUAl9giD6nYaGBvzud7/D2LFj+3soBEGUGGSoEATR73i93oI2MSMIYvBArh+CIDLyhz/8AaeeeipmzpyJY445Bg888ABUVQVguFqWLVuGZ599FsceeyzmzZuH8847D+vXrze/r2ka7r33XixZsgQzZ87EkiVLcPfddyMejwNwd/1s374dV155JY444gjMnTsXy5Yts7WTB4D29nbceOONWLhwIRYsWIC77roLmqYljf/VV1/F2WefjVmzZuGII47AT37yE/T09JjLI5EIbrrpJixevBgzZ87EySefjEcffbSg55AgiN5BigpBEGn51a9+hXvvvRfnnnsubrzxRqxbtw4PPPAA9u7di9tvvx0AsG7dOmzduhXXXHMNKisr8bOf/Qznnnsu/vrXv6KhoQEPP/wwfvvb32L58uUYM2YM/vOf/+Dee++Fx+PBlVdembTPzZs34ytf+QrGjx+PFStWwOPx4Mknn8R5552Hxx57DAsXLoSmabjooouwe/duLF++HFVVVXjkkUfw8ccfo6GhwdzWn//8Z3zve98zO/fu3r0b9957LzZv3ozHH38cgiDg9ttvx1tvvYXly5ejrq4Ob775Ju68805UVVXhnHPO6bNzTRBEMmSoEASRks7OTjz44IP46le/arZuP/LII1FVVYUVK1bgggsuMNdbtWoVDj30UADA7Nmzcfzxx+PJJ5/E9773Pbz77ruYOXOmOekvXLgQgUAA5eXlrvv9+c9/Dq/XiyeffBJlZWUAgGOOOQannXYa7rzzTjz77LN488038dFHH+Hhhx/G4sWLAQCLFi2yBdLquo6VK1fiqKOOwsqVK83Px48fj/PPPx9vvPEGjjnmGLz77rs44ogjcOqppwIADjvsMASDQdTW1hbydBIE0QvI9UMQREo++OADRCIRLFmyBIqimH+YMfD2228DAEaPHm0aKYARHDtv3jysWbMGgDHxv/322/jGN76BRx55BJs3b8a5556LM844w3W/7777Lo499ljTSAEAWZZx6qmn4pNPPkF3dzfWrl0Lj8eDo446ylwnGAzi6KOPNv+/detW7Nu3L2n8CxYsQFlZmTn+ww47DL///e/x7W9/G7/5zW+wc+dO/Pd//zeOOeaYwpxIgiB6DSkqBEGkpK2tDQBw8cUXuy5vamoCAAwbNixpWW1tLT799FMAwEUXXYRQKITnnnsOK1euxF133YUpU6ZgxYoVOPzww5O+297ejrq6uqTP6+rqoOs6urq60N7ejqqqKgiCYFunvr4+afw333wzbr755pTj/8EPfoDhw4fjxRdfxK233opbb70V8+bNw0033YTp06e7HjtBEH0DGSoEQaSkoqICALBy5UqMHz8+aXldXR3uv/9+tLa2Ji1raWkxXSeiKGLp0qVYunQp9u/fjzfeeAOrVq3CFVdcYaoaPJWVlWhpaUn6vLm5GQBQXV2N6upqtLa2QlVVSJJkrsOME378119/PRYuXOi6H8DIOrrssstw2WWXYc+ePXj99dfx4IMP4tprr8VLL72U6vQQBNEHkOuHIIiUzJkzBx6PB42NjZg1a5b5R5Zl3HPPPdi1axcAI0Nny5Yt5vcaGxvxwQcfYNGiRQCAr33ta/jJT34CwFBazj77bCxduhQdHR3o6upK2u+CBQvw+uuv25apqoqXXnoJs2bNgtfrxaJFi6AoCl599VVznVgsZjN8Jk6ciNraWuzatcs2/mHDhuHuu+/GZ599hkgkgpNOOgmPPfYYAGDkyJFYunQpTj31VOzZs6eAZ5MgiN5AigpBECmprq7GRRddhPvvvx9dXV047LDD0NjYiPvvvx+CIJhuEV3Xcemll+Lqq6+GJEn4+c9/jsrKSixbtgyAYXg89thjqKurw7x589DY2IjHH38cCxcuRE1NjS1VGAC+853v4M0338Q3v/lNXHzxxfB4PGbsyCOPPALACJw98sgjsWLFCuzfvx+jRo3Ck08+iQMHDphKjiRJuPrqq/GjH/0IkiTh2GOPRUdHBx588EE0Njbi4IMPht/vx8EHH4yf//zn8Hg8mDZtGrZt24Y//vGPOOmkk/rwbBME4Yag67re34MgCKK0efrpp/HMM89gx44dqKysxKJFi3DNNddg5MiRuOGGG/Duu+/i29/+Nn7xi18gHA7jC1/4ApYvX47Ro0cDABRFwS9/+Uu8+OKL2LdvH8rLy7FkyRJce+21qK6uxq5du3DcccfhjjvuwNlnnw3ASHm+5557sHbtWgiCgNmzZ+M73/mOLWg3HA5j5cqVeOmllxCNRnHKKacgGAzitddewz/+8Q9zvb/+9a945JFHsGnTJgSDQcyfPx9XXXUVpk2bBgDo6urCfffdh9deew3Nzc2ora3FKaecgu9+97vw+/19eKYJgnBChgpBEHnBDBXeMCAIgigUFKNCEARBEETJQoYKQRAEQRAlC7l+CIIgCIIoWUhRIQiCIAiiZCFDhSAIgiCIkoUMFYIgCIIgShYyVAiCIAiCKFnIUCEIgiAIomQhQ4UgCIIgiJKFDBWCIAiCIEoWMlQIgiAIgihZ/j/llOd3lhdhKAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "