-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
215 lines (192 loc) · 8.14 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""
Created on Mar 1, 2020
Pytorch Implementation of LightGCN in
Xiangnan He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation
@author: Jianbai Ye ([email protected])
Define models here
"""
import world
import torch
from dataloader import BasicDataset
from torch import nn
import numpy as np
class BasicModel(nn.Module):
def __init__(self):
super(BasicModel, self).__init__()
def getUsersRating(self, users):
raise NotImplementedError
class PairWiseModel(BasicModel):
def __init__(self):
super(PairWiseModel, self).__init__()
def bpr_loss(self, users, pos, neg):
"""
Parameters:
users: users list
pos: positive items for corresponding users
neg: negative items for corresponding users
Return:
(log-loss, l2-loss)
"""
raise NotImplementedError
class PureMF(BasicModel):
def __init__(self,
config:dict,
dataset:BasicDataset):
super(PureMF, self).__init__()
self.num_users = dataset.n_users
self.num_items = dataset.m_items
self.latent_dim = config['latent_dim_rec']
self.f = nn.Sigmoid()
self.__init_weight()
def __init_weight(self):
self.embedding_user = torch.nn.Embedding(
num_embeddings=self.num_users, embedding_dim=self.latent_dim)
self.embedding_item = torch.nn.Embedding(
num_embeddings=self.num_items, embedding_dim=self.latent_dim)
print("using Normal distribution N(0,1) initialization for PureMF")
def getUsersRating(self, users):
users = users.long()
users_emb = self.embedding_user(users)
items_emb = self.embedding_item.weight
scores = torch.matmul(users_emb, items_emb.t())
return self.f(scores)
def bpr_loss(self, users, pos, neg):
users_emb = self.embedding_user(users.long())
pos_emb = self.embedding_item(pos.long())
neg_emb = self.embedding_item(neg.long())
pos_scores= torch.sum(users_emb*pos_emb, dim=1)
neg_scores= torch.sum(users_emb*neg_emb, dim=1)
loss = torch.mean(nn.functional.softplus(neg_scores - pos_scores))
reg_loss = (1/2)*(users_emb.norm(2).pow(2) +
pos_emb.norm(2).pow(2) +
neg_emb.norm(2).pow(2))/float(len(users))
return loss, reg_loss
def forward(self, users, items):
users = users.long()
items = items.long()
users_emb = self.embedding_user(users)
items_emb = self.embedding_item(items)
scores = torch.sum(users_emb*items_emb, dim=1)
return self.f(scores)
class LightGCN(BasicModel):
def __init__(self,
config:dict,
dataset:BasicDataset):
super(LightGCN, self).__init__()
self.config = config
self.dataset : dataloader.BasicDataset = dataset
self.__init_weight()
def __init_weight(self):
self.num_users = self.dataset.n_users
self.num_items = self.dataset.m_items
self.latent_dim = self.config['latent_dim_rec']
self.n_layers = self.config['lightGCN_n_layers']
self.keep_prob = self.config['keep_prob']
self.A_split = self.config['A_split']
self.embedding_user = torch.nn.Embedding(
num_embeddings=self.num_users, embedding_dim=self.latent_dim)
self.embedding_item = torch.nn.Embedding(
num_embeddings=self.num_items, embedding_dim=self.latent_dim)
if self.config['pretrain'] == 0:
# nn.init.xavier_uniform_(self.embedding_user.weight, gain=1)
# nn.init.xavier_uniform_(self.embedding_item.weight, gain=1)
# print('use xavier initilizer')
# random normal init seems to be a better choice when lightGCN actually don't use any non-linear activation function
nn.init.normal_(self.embedding_user.weight, std=0.1)
nn.init.normal_(self.embedding_item.weight, std=0.1)
world.cprint('use NORMAL distribution initilizer')
else:
self.embedding_user.weight.data.copy_(torch.from_numpy(self.config['user_emb']))
self.embedding_item.weight.data.copy_(torch.from_numpy(self.config['item_emb']))
print('use pretarined data')
self.f = nn.Sigmoid()
self.Graph = self.dataset.getSparseGraph()
print(f"lgn is already to go(dropout:{self.config['dropout']})")
# print("save_txt")
def __dropout_x(self, x, keep_prob):
size = x.size()
index = x.indices().t()
values = x.values()
random_index = torch.rand(len(values)) + keep_prob
random_index = random_index.int().bool()
index = index[random_index]
values = values[random_index]/keep_prob
g = torch.sparse.FloatTensor(index.t(), values, size)
return g
def __dropout(self, keep_prob):
if self.A_split:
graph = []
for g in self.Graph:
graph.append(self.__dropout_x(g, keep_prob))
else:
graph = self.__dropout_x(self.Graph, keep_prob)
return graph
def computer(self):
"""
propagate methods for lightGCN
"""
users_emb = self.embedding_user.weight
items_emb = self.embedding_item.weight
all_emb = torch.cat([users_emb, items_emb])
# torch.split(all_emb , [self.num_users, self.num_items])
embs = [all_emb]
if self.config['dropout']:
if self.training:
print("droping")
g_droped = self.__dropout(self.keep_prob)
else:
g_droped = self.Graph
else:
g_droped = self.Graph
for layer in range(self.n_layers):
if self.A_split:
temp_emb = []
for f in range(len(g_droped)):
temp_emb.append(torch.sparse.mm(g_droped[f], all_emb))
side_emb = torch.cat(temp_emb, dim=0)
all_emb = side_emb
else:
all_emb = torch.sparse.mm(g_droped, all_emb)
embs.append(all_emb)
embs = torch.stack(embs, dim=1)
#print(embs.size())
light_out = torch.mean(embs, dim=1)
users, items = torch.split(light_out, [self.num_users, self.num_items])
return users, items
def getUsersRating(self, users):
all_users, all_items = self.computer()
users_emb = all_users[users.long()]
items_emb = all_items
rating = self.f(torch.matmul(users_emb, items_emb.t()))
return rating
def getEmbedding(self, users, pos_items, neg_items):
all_users, all_items = self.computer()
users_emb = all_users[users]
pos_emb = all_items[pos_items]
neg_emb = all_items[neg_items]
users_emb_ego = self.embedding_user(users)
pos_emb_ego = self.embedding_item(pos_items)
neg_emb_ego = self.embedding_item(neg_items)
return users_emb, pos_emb, neg_emb, users_emb_ego, pos_emb_ego, neg_emb_ego
def bpr_loss(self, users, pos, neg):
(users_emb, pos_emb, neg_emb,
userEmb0, posEmb0, negEmb0) = self.getEmbedding(users.long(), pos.long(), neg.long())
reg_loss = (1/2)*(userEmb0.norm(2).pow(2) +
posEmb0.norm(2).pow(2) +
negEmb0.norm(2).pow(2))/float(len(users))
pos_scores = torch.mul(users_emb, pos_emb)
pos_scores = torch.sum(pos_scores, dim=1)
neg_scores = torch.mul(users_emb, neg_emb)
neg_scores = torch.sum(neg_scores, dim=1)
loss = torch.mean(torch.nn.functional.softplus(neg_scores - pos_scores))
return loss, reg_loss
def forward(self, users, items):
# compute embedding
all_users, all_items = self.computer()
# print('forward')
#all_users, all_items = self.computer()
users_emb = all_users[users]
items_emb = all_items[items]
inner_pro = torch.mul(users_emb, items_emb)
gamma = torch.sum(inner_pro, dim=1)
return gamma