-
Notifications
You must be signed in to change notification settings - Fork 0
/
Short_Theory_8_2.thy
1044 lines (904 loc) · 41.4 KB
/
Short_Theory_8_2.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
theory Short_Theory_8_2
imports "HOL-IMP.BExp" "HOL-IMP.Star"
begin
datatype
com = SKIP
| Assign vname aexp ("_ ::= _" [1000, 61] 61)
| Seq com com ("_;;/ _" [60, 61] 60)
| If bexp com com ("(IF _/ THEN _/ ELSE _)" [0, 60, 61] 61)
| While bexp com ("(WHILE _/ DO _)" [0, 61] 61)
| Repeat com bexp ("(REPEAT _/ UNTIL _)" [60, 0] 61)
inductive
big_step :: "com \<times> state \<Rightarrow> state \<Rightarrow> bool" (infix "\<Rightarrow>" 55)
where
Skip: "(SKIP,s) \<Rightarrow> s" |
Assign: "(x ::= a,s) \<Rightarrow> s(x := aval a s)" |
Seq: "\<lbrakk> (c\<^sub>1,s\<^sub>1) \<Rightarrow> s\<^sub>2; (c\<^sub>2,s\<^sub>2) \<Rightarrow> s\<^sub>3 \<rbrakk> \<Longrightarrow> (c\<^sub>1;;c\<^sub>2, s\<^sub>1) \<Rightarrow> s\<^sub>3" |
IfTrue: "\<lbrakk> bval b s; (c\<^sub>1,s) \<Rightarrow> t \<rbrakk> \<Longrightarrow> (IF b THEN c\<^sub>1 ELSE c\<^sub>2, s) \<Rightarrow> t" |
IfFalse: "\<lbrakk> \<not>bval b s; (c\<^sub>2,s) \<Rightarrow> t \<rbrakk> \<Longrightarrow> (IF b THEN c\<^sub>1 ELSE c\<^sub>2, s) \<Rightarrow> t" |
WhileFalse: "\<not>bval b s \<Longrightarrow> (WHILE b DO c,s) \<Rightarrow> s" |
WhileTrue: "\<lbrakk> bval b s\<^sub>1; (c,s\<^sub>1) \<Rightarrow> s\<^sub>2; (WHILE b DO c, s\<^sub>2) \<Rightarrow> s\<^sub>3 \<rbrakk>
\<Longrightarrow> (WHILE b DO c, s\<^sub>1) \<Rightarrow> s\<^sub>3" |
RepeatTrue: "\<lbrakk> bval b t; (c, s) \<Rightarrow> t \<rbrakk> \<Longrightarrow> (REPEAT c UNTIL b, s) \<Rightarrow> t" |
RepeatFalse: "\<lbrakk> \<not>bval b s\<^sub>2; (c, s\<^sub>1) \<Rightarrow> s\<^sub>2; (REPEAT c UNTIL b, s\<^sub>2) \<Rightarrow> s\<^sub>3 \<rbrakk>
\<Longrightarrow> (REPEAT c UNTIL b, s\<^sub>1) \<Rightarrow> s\<^sub>3"
lemmas big_step_induct = big_step.induct[split_format(complete)]
declare big_step.intros [intro]
lemma BS_SkipE[elim!]: "\<lbrakk>(SKIP, s) \<Rightarrow> t; t = s \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (cases rule: big_step.cases) auto
lemma BS_AssignE[elim!]: "\<lbrakk>(x ::= a, s) \<Rightarrow> t; t = s(x := aval a s) \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (cases rule: big_step.cases) auto
lemma BS_SeqE[elim!]: "\<lbrakk>(c\<^sub>1;; c\<^sub>2, s\<^sub>1) \<Rightarrow> s\<^sub>3;
\<And>s\<^sub>2. \<lbrakk>(c\<^sub>1, s\<^sub>1) \<Rightarrow> s\<^sub>2; (c\<^sub>2, s\<^sub>2) \<Rightarrow> s\<^sub>3\<rbrakk> \<Longrightarrow> P\<rbrakk>
\<Longrightarrow> P"
by (cases rule: big_step.cases) auto
lemma BS_IfE[elim!]: "\<lbrakk>
(IF b THEN c\<^sub>1 ELSE c\<^sub>2, s) \<Rightarrow> t;
\<lbrakk>bval b s; (c\<^sub>1, s) \<Rightarrow> t\<rbrakk> \<Longrightarrow> P;
\<lbrakk>\<not> bval b s; (c\<^sub>2, s) \<Rightarrow> t\<rbrakk> \<Longrightarrow> P
\<rbrakk> \<Longrightarrow> P"
by (cases rule: big_step.cases) auto
lemma BS_WhileE[elim]: "\<lbrakk>
(WHILE b DO c, s) \<Rightarrow> t;
\<lbrakk>\<not> bval b t; s = t\<rbrakk> \<Longrightarrow> P;
\<And>s\<^sub>2. \<lbrakk>bval b s; (c, s) \<Rightarrow> s\<^sub>2; (WHILE b DO c, s\<^sub>2) \<Rightarrow> t\<rbrakk> \<Longrightarrow> P
\<rbrakk> \<Longrightarrow> P"
by (cases rule: big_step.cases) auto
lemma BS_RepeatE[elim]: "\<lbrakk>
(REPEAT c UNTIL b, s) \<Rightarrow> t;
\<lbrakk>bval b t; (c, s) \<Rightarrow> t\<rbrakk> \<Longrightarrow> P;
\<And>s\<^sub>2. \<lbrakk>\<not> bval b s\<^sub>2; (c, s) \<Rightarrow> s\<^sub>2; (REPEAT c UNTIL b, s\<^sub>2) \<Rightarrow> t\<rbrakk> \<Longrightarrow> P
\<rbrakk> \<Longrightarrow> P"
by (cases rule: big_step.cases) auto
lemma assign_simp:
"(x ::= a,s) \<Rightarrow> s' \<longleftrightarrow> (s' = s(x := aval a s))"
by auto
theorem big_step_determ: "\<lbrakk> (c,s) \<Rightarrow> t; (c,s) \<Rightarrow> u \<rbrakk> \<Longrightarrow> u = t"
by (induct arbitrary: u rule: big_step.induct) blast+
inductive small_step :: "com * state \<Rightarrow> com * state \<Rightarrow> bool" (infix "\<rightarrow>" 55)
where
Assign: "(x ::= a, s) \<rightarrow> (SKIP, s(x := aval a s))" |
Seq1: "(SKIP;; c\<^sub>2, s) \<rightarrow> (c\<^sub>2, s)" |
Seq2: "(c\<^sub>1, s) \<rightarrow> (c\<^sub>1', s') \<Longrightarrow> (c\<^sub>1;; c\<^sub>2, s) \<rightarrow> (c\<^sub>1';; c\<^sub>2, s')" |
IfTrue: "bval b s \<Longrightarrow> (IF b THEN c\<^sub>1 ELSE c\<^sub>2, s) \<rightarrow> (c\<^sub>1, s)" |
IfFalse: "\<not>bval b s \<Longrightarrow> (IF b THEN c\<^sub>1 ELSE c\<^sub>2, s) \<rightarrow> (c\<^sub>2, s)" |
While: "(WHILE b DO c, s) \<rightarrow> (IF b THEN c;; WHILE b DO c ELSE SKIP, s)" |
Repeat: "(REPEAT c UNTIL b, s) \<rightarrow> (c;; IF b THEN SKIP ELSE REPEAT c UNTIL b, s)"
abbreviation small_steps :: "com * state \<Rightarrow> com * state \<Rightarrow> bool" (infix "\<rightarrow>*" 55)
where "x \<rightarrow>* y == star small_step x y"
lemmas small_step_induct = small_step.induct[split_format(complete)]
declare small_step.intros[simp,intro]
lemma SS_SkipE[elim!]: "(SKIP, s) \<rightarrow> ct \<Longrightarrow> P"
by (cases rule: small_step.cases) auto
lemma SS_AssignE[elim!]: "\<lbrakk>(x ::= a, s) \<rightarrow> ct; ct = (SKIP, s(x := aval a s)) \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (cases rule: small_step.cases) auto
lemma SS_SeqE[elim]: "\<lbrakk>
(c1;; c2, s) \<rightarrow> ct;
\<lbrakk>ct = (c2, s); c1 = SKIP\<rbrakk> \<Longrightarrow> P;
\<And>c\<^sub>1' s'. \<lbrakk>ct = (c\<^sub>1';; c2, s'); (c1, s) \<rightarrow> (c\<^sub>1', s')\<rbrakk> \<Longrightarrow> P
\<rbrakk> \<Longrightarrow> P"
by (cases rule: small_step.cases) auto
lemma SS_IfE[elim!]: "\<lbrakk>
(IF b THEN c1 ELSE c2, s) \<rightarrow> ct;
\<lbrakk>ct = (c1, s); bval b s\<rbrakk> \<Longrightarrow> P;
\<lbrakk>ct = (c2, s); \<not> bval b s\<rbrakk> \<Longrightarrow> P
\<rbrakk> \<Longrightarrow> P"
by (cases rule: small_step.cases) auto
lemma SS_WhileE[elim]: "\<lbrakk>
(WHILE b DO c, s) \<rightarrow> ct;
ct = (IF b THEN c;; WHILE b DO c ELSE SKIP, s) \<Longrightarrow> P
\<rbrakk> \<Longrightarrow> P"
by (cases rule: small_step.cases) auto
lemma SS_RepeatE[elim]: "\<lbrakk>
(REPEAT c UNTIL b, s) \<rightarrow> ct;
ct = (c;; IF b THEN SKIP ELSE REPEAT c UNTIL b, s) \<Longrightarrow> P
\<rbrakk> \<Longrightarrow> P"
by (cases rule: small_step.cases) auto
lemma star_seq2: "(c1,s) \<rightarrow>* (c1',s') \<Longrightarrow> (c1;;c2,s) \<rightarrow>* (c1';;c2,s')"
by (induct rule: star_induct) (simp, blast intro: star.step)
lemma seq_comp: "\<lbrakk>(c1,s1) \<rightarrow>* (SKIP,s2); (c2,s2) \<rightarrow>* (SKIP,s3)\<rbrakk>
\<Longrightarrow> (c1;;c2, s1) \<rightarrow>* (SKIP,s3)"
by (blast intro: star.step star_seq2 star_trans)
lemma big_to_small: "cs \<Rightarrow> t \<Longrightarrow> cs \<rightarrow>* (SKIP,t)"
by (induction rule: big_step.induct) (blast intro: seq_comp star.step)+
lemma small1_big_continue: "cs \<rightarrow> cs' \<Longrightarrow> cs' \<Rightarrow> t \<Longrightarrow> cs \<Rightarrow> t"
by (induct arbitrary: t rule: small_step.induct) auto
lemma small_to_big: "cs \<rightarrow>* (SKIP,t) \<Longrightarrow> cs \<Rightarrow> t"
by (induct cs "(SKIP,t)" rule: star.induct) (auto intro: small1_big_continue)
theorem big_iff_small: "cs \<Rightarrow> t = cs \<rightarrow>* (SKIP,t)"
by (blast intro: big_to_small small_to_big)
declare [[coercion_enabled]]
declare [[coercion "int :: nat \<Rightarrow> int"]]
fun inth :: "'a list \<Rightarrow> int \<Rightarrow> 'a" (infixl "!!" 100) where
"(x # xs) !! i = (if i = 0 then x else xs !! (i - 1))" |
"[] !! i = undefined"
lemma inth_append [simp]: "0 \<le> i \<Longrightarrow>
(xs @ ys) !! i = (if i < size xs then xs !! i else ys !! (i - size xs))"
by (induct xs arbitrary: i) (auto simp: algebra_simps)
lemma nth_inth: "i < length (x # xs) \<Longrightarrow> (x # xs) !! i = (x # xs) ! i"
proof (induct xs arbitrary: i x)
case (Cons a xs)
then show ?case
proof (cases "i = 0")
case False
from Cons False have Hl: "i - 1 < length (a # xs)" by auto
from Cons(2) False have "(x # a # xs) !! int i = (a # xs) !! (int (i - 1))" using int_ops(6) by auto
also from Cons(1) Hl have "\<dots> = (a # xs) ! (i - 1)" by blast
also from Cons(2) False have "\<dots> = (x # a # xs) ! i" by simp
finally show ?thesis .
qed simp
qed simp
abbreviation (output)
"isize xs == int (length xs)"
notation isize ("size")
datatype instr =
LOADI int | LOAD vname |
ADD |
STORE vname |
JMP int | JMPLESS int | JMPGE int
type_synonym stack = "val list"
type_synonym config = "int \<times> state \<times> stack"
abbreviation "hd2 xs == hd (tl xs)"
abbreviation "tl2 xs == tl (tl xs)"
(* note: by using hd / tl functions rather than pattern matching, we limit
reliance on the structure of stk in the behavior of iexec, allowing us
to simplify preconditions on lemmas that don't rely on the structure of
the stack
*)
fun iexec :: "instr \<Rightarrow> config \<Rightarrow> config" where
"iexec (LOADI n) (i, s, stk) = (i + 1, s, n # stk)" |
"iexec (LOAD x) (i, s, stk) = (i + 1, s, s x # stk)" |
"iexec ADD (i, s, stk) = (i + 1, s, (hd2 stk + hd stk) # tl2 stk)" |
"iexec (STORE x) (i, s, stk) = (i + 1, s(x := hd stk), tl stk)" |
"iexec (JMP n) (i, s, stk) = (i + 1 + n, s, stk)" |
"iexec (JMPLESS n) (i, s, stk) = (if hd2 stk < hd stk then i + 1 + n else i + 1, s, tl2 stk)" |
"iexec (JMPGE n) (i, s, stk) = (if hd2 stk >= hd stk then i + 1 + n else i + 1, s, tl2 stk)"
definition exec1 :: "instr list \<Rightarrow> config \<Rightarrow> config \<Rightarrow> bool"
("(_/ \<turnstile> (_ \<rightarrow>/ _))" [59,0,59] 60) where
"P \<turnstile> c \<rightarrow> c' \<longleftrightarrow>
(\<exists>i s stk. c = (i, s, stk) \<and> c' = iexec (P !! i) (i, s, stk) \<and> 0 \<le> i \<and> i < size P)"
(* an introduction rule that expects the LHS config parameters to already be known *)
lemma exec1I [intro, code_pred_intro]:
"c' = iexec (P !! i) (i, s, stk) \<Longrightarrow>
0 \<le> i \<Longrightarrow> i < size P \<Longrightarrow>
P \<turnstile> (i, s, stk) \<rightarrow> c'"
by (simp add: exec1_def)
code_pred exec1 by (metis exec1_def)
abbreviation exec :: "instr list \<Rightarrow> config \<Rightarrow> config \<Rightarrow> bool"
("(_/ \<turnstile> (_ \<rightarrow>*/ _))" 50) where
"exec P \<equiv> star (exec1 P)"
lemmas exec_induct = star.induct [of "exec1 P", split_format(complete)]
(* proof by case analysis on instructions, and that each case changes the PC relative to its
initial value
*)
lemma iexec_shift [simp]:
"(n + i', s') = iexec x (n + i, s) \<longleftrightarrow>
(i', s') = iexec x (i, s)"
proof -
{
fix fs' ss' fs ss
have "(n + i', fs', ss') = iexec x (n + i, fs, ss) \<longleftrightarrow>
(i', fs', ss') = iexec x (i, fs, ss)"
by (cases x, auto)
}
then have "(n + i', fst s', snd s') = iexec x (n + i, fst s, snd s) \<longleftrightarrow>
(i', fst s', snd s') = iexec x (i, fst s, snd s)" .
then show "(n + i', s') = iexec x (n + i, s) \<longleftrightarrow>
(i', s') = iexec x (i, s)" by simp
qed
(* trivial: iexec (P !! i) depends only on first i elements of P, and 0 \<le> i < size P *)
lemma exec1_appendR: "P \<turnstile> c \<rightarrow> c' \<Longrightarrow> P @ P' \<turnstile> c \<rightarrow> c'"
by (auto simp add: exec1_def)
lemma exec_appendR: "P \<turnstile> c \<rightarrow>* c' \<Longrightarrow> P @ P' \<turnstile> c \<rightarrow>* c'"
by (induct rule: star.induct) (blast intro: star.step exec1_appendR)+
lemma exec1_appendL: "P \<turnstile> (i, s, stk) \<rightarrow> (i', s', stk') \<Longrightarrow>
P' @ P \<turnstile> (size P' + i, s, stk) \<rightarrow> (size P' + i', s', stk')"
by (auto simp add: exec1_def)
lemma exec_appendL: "P \<turnstile> (i, s, stk) \<rightarrow>* (i', s', stk') \<Longrightarrow>
P' @ P \<turnstile> (size P' + i, s, stk) \<rightarrow>* (size P' + i', s', stk')"
by (induct rule: exec_induct) (blast intro: star.step exec1_appendL)+
(* specialize append lemmas to discuss execution through concrete instructions
while assuming the execution of preceding and following code.
*)
lemma exec_Cons_1 [intro]:
"P \<turnstile> (0, s, stk) \<rightarrow>* (j, t, stk') \<Longrightarrow>
instr # P \<turnstile> (1, s, stk) \<rightarrow>* (1 + j, t, stk')"
by (drule exec_appendL [where P'="[instr]"]) simp
(* as exec_appendL, with (i := i - size P'), precondition necessary to satisfy exec1 precondition *)
lemma exec_appendL_if [intro]:
"size P' <= i \<Longrightarrow>
P \<turnstile> (i - size P', s, stk) \<rightarrow>* (j, s', stk') \<Longrightarrow>
i' = size P' + j \<Longrightarrow>
P' @ P \<turnstile> (i, s, stk) \<rightarrow>* (i', s', stk')"
by (drule exec_appendL [where P'=P']) simp
lemma exec_append_trans[intro]:
fixes i' i'' j'' :: int
shows "P \<turnstile> (0, s, stk) \<rightarrow>* (i', s', stk') \<Longrightarrow>
size P \<le> i' \<Longrightarrow>
P' \<turnstile> (i' - size P, s', stk') \<rightarrow>* (i'', s'', stk'') \<Longrightarrow>
j'' = size P + i'' \<Longrightarrow>
P @ P' \<turnstile> (0, s, stk) \<rightarrow>* (j'', s'', stk'')"
by(metis star_trans [OF exec_appendR exec_appendL_if])
declare Let_def[simp]
subsection "Compilation"
fun acomp :: "aexp \<Rightarrow> instr list" where
"acomp (N n) = [LOADI n]" |
"acomp (V x) = [LOAD x]" |
"acomp (Plus a1 a2) = acomp a1 @ acomp a2 @ [ADD]"
lemma acomp_correct[intro]:
"acomp a \<turnstile> (0, s, stk) \<rightarrow>* (size (acomp a), s, aval a s # stk)"
by (induction a arbitrary: stk) fastforce+
(* f = True means that we intend to jump n spaces upon the expression evaluating to True, and
step to next instruction upon the expression evaluating to False
f = False means vice versa
Suppose f = True in bcomp (And b1 b2). Then we want b1 to jump to just past b2 on False,
(we know early that the And expression evaluates to False),
and to continue with b2 on True. Thus we let cb1 = bcomp b1 False (size cb2)
suppose f = False in bcomp (And b1 b2). Then we want b1 to jump to (size cb2 + n) on False
(we know early that the And expression evaluates to False),
and to continue with b2 on True.
we have to have a JMP instruction to avoid jumping back from within the compiled bexp,
since our analysis so far has assumed that we always jump forward
*)
fun bcomp :: "bexp \<Rightarrow> bool \<Rightarrow> int \<Rightarrow> instr list" where
"bcomp (Bc v) f n = (if v = f then [JMP n] else [])" |
"bcomp (Not b) f n = bcomp b (\<not>f) n" |
"bcomp (And b1 b2) f n = (let
cb2 = bcomp b2 f n;
m = if f
then size cb2
else size cb2 + n;
cb1 = bcomp b1 False m in
cb1 @ cb2)" |
"bcomp (Less a1 a2) f n =
acomp a1 @ acomp a2 @ (if f then [JMPLESS n] else [JMPGE n])"
lemma bcomp_correct[intro]:
fixes n :: int
shows
"0 \<le> n \<Longrightarrow>
bcomp b f n \<turnstile>
(0, s, stk) \<rightarrow>* (size (bcomp b f n) + (if f = bval b s then n else 0), s, stk)"
proof (induct b arbitrary: f n)
case Not
from Not(1) [where f="\<not>f"] Not(2) show ?case by fastforce
next
case (And b1 b2)
from And(1)
[of "if f then size (bcomp b2 f n) else size (bcomp b2 f n) + n" "False"]
And(2) [of n f] And(3)
show ?case by fastforce
qed fastforce+
fun ccomp :: "com \<Rightarrow> instr list" where
"ccomp SKIP = []" |
"ccomp (x ::= a) = acomp a @ [STORE x]" |
"ccomp (c\<^sub>1;; c\<^sub>2) = ccomp c\<^sub>1 @ ccomp c\<^sub>2" |
"ccomp (IF b THEN c\<^sub>1 ELSE c\<^sub>2) = (let
cc\<^sub>1 = ccomp c\<^sub>1;
cc\<^sub>2 = ccomp c\<^sub>2;
cb = bcomp b False (size cc\<^sub>1 + 1) in
cb @ cc\<^sub>1 @ JMP (size cc\<^sub>2) # cc\<^sub>2)" |
"ccomp (WHILE b DO c) = (let
cc = ccomp c;
cb = bcomp b False (size cc + 1) in
cb @ cc @ [JMP (-(size cb + size cc + 1))])" |
"ccomp (REPEAT c UNTIL b) = (let
cc = ccomp c;
cb = bcomp b True 1 in
cc @ cb @ [JMP (-(size cc + size cb + 1))])"
lemma shift_bcomp: "\<And>m n. size (bcomp b f m) = size (bcomp b f n)"
proof (induct b arbitrary: f)
case (And b1 b2)
then show ?case
proof auto
assume H1: "\<And>f m n. length (bcomp b1 f m) = length (bcomp b1 f n)"
assume H2: "\<And>f m n. length (bcomp b2 f m) = length (bcomp b2 f n)"
from H2 have "size (bcomp b1 False (size (bcomp b2 True m))) + size (bcomp b2 True m) =
size (bcomp b1 False (size (bcomp b2 True m))) + size (bcomp b2 True n)" by simp
also from H1 have "\<dots> =
size (bcomp b1 False (size (bcomp b2 True n))) + size (bcomp b2 True n)" by simp
finally show "size (bcomp b1 False (size (bcomp b2 True m))) + size (bcomp b2 True m) =
size (bcomp b1 False (size (bcomp b2 True n))) + size (bcomp b2 True n)" .
from H2 have "size (bcomp b1 False (size (bcomp b2 False m) + m)) + size (bcomp b2 False m) =
size (bcomp b1 False (size (bcomp b2 False m) + m)) + size (bcomp b2 False n)" by simp
also from H1 have "\<dots> =
size (bcomp b1 False (size (bcomp b2 False n) + n)) + size (bcomp b2 False n)" by simp
finally show "size (bcomp b1 False (size (bcomp b2 False m) + m)) + size (bcomp b2 False m) =
size (bcomp b1 False (size (bcomp b2 False n) + n)) + size (bcomp b2 False n)" .
qed
qed simp+
lemma ccomp_bigstep:
"(c, s) \<Rightarrow> t \<Longrightarrow> ccomp c \<turnstile> (0, s, stk) \<rightarrow>* (size (ccomp c), t, stk)"
proof(induct arbitrary: stk rule: big_step_induct)
case (Assign x a s)
show ?case by (fastforce simp:fun_upd_def cong: if_cong)
next
case (Seq c1 s1 s2 c2 s3)
let ?cc1 = "ccomp c1" and ?cc2 = "ccomp c2"
have "?cc1 @ ?cc2 \<turnstile> (0, s1 ,stk) \<rightarrow>* (size ?cc1, s2, stk)"
using Seq(2) by fastforce
moreover
have "?cc1 @ ?cc2 \<turnstile> (size ?cc1, s2, stk) \<rightarrow>* (size (?cc1 @ ?cc2), s3, stk)"
using Seq(4) by fastforce
ultimately show ?case by simp (blast intro: star_trans)
next
case (WhileTrue b s1 c s2 s3)
let ?cc = "ccomp c"
let ?cb = "bcomp b False (size ?cc + 1)"
and ?cw = "ccomp (WHILE b DO c)"
have "?cw \<turnstile> (0, s1, stk) \<rightarrow>* (size ?cb, s1, stk)"
using \<open>bval b s1\<close> by fastforce
moreover have "?cw \<turnstile> (size ?cb, s1, stk) \<rightarrow>* (size ?cb + size ?cc, s2, stk)"
using WhileTrue(3) by fastforce
moreover have "?cw \<turnstile> (size ?cb + size ?cc, s2, stk) \<rightarrow>* (0, s2, stk)" by fastforce
ultimately show ?case using WhileTrue(5) by (blast intro: star_trans)
next
case (RepeatFalse b s\<^sub>2 c s\<^sub>1 s\<^sub>3)
let ?cc = "ccomp c"
let ?cb = "bcomp b True 1"
and ?cr = "ccomp (REPEAT c UNTIL b)"
have "?cr \<turnstile> (0, s\<^sub>1, stk) \<rightarrow>* (size ?cc, s\<^sub>2, stk)" using RepeatFalse(3) by fastforce
moreover have "?cr \<turnstile> (size ?cc, s\<^sub>2, stk) \<rightarrow>* (size ?cc + size ?cb, s\<^sub>2, stk)"
using \<open>\<not> bval b s\<^sub>2\<close> by fastforce
moreover have "?cr \<turnstile> (size ?cc + size ?cb, s\<^sub>2, stk) \<rightarrow>* (0, s\<^sub>2, stk)" by fastforce
ultimately show ?case using RepeatFalse(5) by (blast intro: star_trans)
qed fastforce+
text \<open>
The preservation of the source code semantics is already shown in the
parent theory \<open>Compiler\<close>. This here shows the second direction.
\<close>
subsection \<open>Definitions\<close>
text \<open>Execution in \<^term>\<open>n\<close> steps for simpler induction\<close>
primrec
exec_n :: "instr list \<Rightarrow> config \<Rightarrow> nat \<Rightarrow> config \<Rightarrow> bool"
("_/ \<turnstile> (_ \<rightarrow>^_/ _)" [65,0,1000,55] 55)
where
"P \<turnstile> c \<rightarrow>^0 c' = (c'=c)" |
"P \<turnstile> c \<rightarrow>^(Suc n) c'' = (\<exists>c'. (P \<turnstile> c \<rightarrow> c') \<and> P \<turnstile> c' \<rightarrow>^n c'')"
(* Note: big-step notation causes parsing ambiguity that isn't well-typed *)
text \<open>The possible successor PCs of an instruction at position \<^term>\<open>n\<close>\<close>
definition isuccs :: "instr \<Rightarrow> int \<Rightarrow> int set" where
"isuccs i n = (case i of
JMP j \<Rightarrow> {n + 1 + j} |
JMPLESS j \<Rightarrow> {n + 1 + j, n + 1} |
JMPGE j \<Rightarrow> {n + 1 + j, n + 1} |
_ \<Rightarrow> {n +1})"
text \<open>The possible successors PCs of an instruction list starting from position n of P to its end\<close>
definition succs :: "instr list \<Rightarrow> int \<Rightarrow> int set" where
"succs P n = {s. \<exists>i\<ge>0. i < size P \<and> s \<in> isuccs (P !! i) (n + i)}"
text \<open>Possible exit PCs of a program\<close>
definition exits :: "instr list \<Rightarrow> int set" where
"exits P = succs P 0 - {0..<size P}"
subsection \<open>Basic properties of \<^term>\<open>exec_n\<close>\<close>
lemma exec_n_exec:
"P \<turnstile> c \<rightarrow>^n c' \<Longrightarrow> P \<turnstile> c \<rightarrow>* c'"
by (induct n arbitrary: c) (auto intro: star.step)
lemma exec_0 [intro!]: "P \<turnstile> c \<rightarrow>^0 c" by simp
lemma exec_Suc:
"\<lbrakk>P \<turnstile> c \<rightarrow> c'; P \<turnstile> c' \<rightarrow>^n c''\<rbrakk> \<Longrightarrow> P \<turnstile> c \<rightarrow>^(Suc n) c''"
by (fastforce simp del: split_paired_Ex)
lemma exec_exec_n:
"P \<turnstile> c \<rightarrow>* c' \<Longrightarrow> \<exists>n. P \<turnstile> c \<rightarrow>^n c'"
by (induct rule: star.induct) (auto intro: exec_Suc)
lemma exec_eq_exec_n:
"(P \<turnstile> c \<rightarrow>* c') = (\<exists>n. P \<turnstile> c \<rightarrow>^n c')"
by (blast intro: exec_exec_n exec_n_exec)
lemma exec_n_Nil [simp]:
"[] \<turnstile> c \<rightarrow>^k c' = (c' = c \<and> k = 0)"
by (induct k) (auto simp: exec1_def)
lemma exec1_exec_n [intro!]:
"P \<turnstile> c \<rightarrow> c' \<Longrightarrow> P \<turnstile> c \<rightarrow>^1 c'"
by (cases c') simp
subsection \<open>Concrete symbolic execution steps\<close>
lemma exec_n_step:
"n \<noteq> n' \<Longrightarrow>
P \<turnstile> (n,stk,s) \<rightarrow>^k (n',stk',s') =
(\<exists>c. P \<turnstile> (n,stk,s) \<rightarrow> c \<and> P \<turnstile> c \<rightarrow>^(k - 1) (n',stk',s') \<and> 0 < k)"
by (cases k) auto
text \<open>Note: fst c refers to the program counter\<close>
lemma exec1_end:
"size P \<le> fst c \<Longrightarrow> \<not> P \<turnstile> c \<rightarrow> c'"
by (auto simp: exec1_def)
lemma exec_n_end:
"size P \<le> (n::int) \<Longrightarrow>
P \<turnstile> (n,s,stk) \<rightarrow>^k (n',s',stk') = (n' = n \<and> stk'=stk \<and> s'=s \<and> k =0)"
by (cases k) (auto simp: exec1_end)
lemmas exec_n_simps = exec_n_step exec_n_end
subsection \<open>Basic properties of \<^term>\<open>succs\<close>\<close>
lemma succs_simps [simp]:
"succs [ADD] n = {n + 1}"
"succs [LOADI v] n = {n + 1}"
"succs [LOAD x] n = {n + 1}"
"succs [STORE x] n = {n + 1}"
"succs [JMP i] n = {n + 1 + i}"
"succs [JMPGE i] n = {n + 1 + i, n + 1}"
"succs [JMPLESS i] n = {n + 1 + i, n + 1}"
by (auto simp: succs_def isuccs_def)
lemma succs_empty [iff]: "succs [] n = {}"
by (simp add: succs_def)
lemma succs_Cons:
"succs (x # xs) n = isuccs x n \<union> succs xs (1 + n)" (is "_ = ?x \<union> ?xs")
proof
let ?isuccs = "\<lambda>p P n i::int. 0 \<le> i \<and> i < size P \<and> p \<in> isuccs (P!!i) (n+i)"
have "p \<in> ?x \<union> ?xs" if assm: "p \<in> succs (x#xs) n" for p
proof -
from assm obtain i::int where isuccs: "?isuccs p (x#xs) n i"
unfolding succs_def by auto
show ?thesis
proof cases
assume "i = 0" with isuccs show ?thesis by simp
next
assume "i \<noteq> 0"
with isuccs
have "?isuccs p xs (1+n) (i - 1)" by auto
hence "p \<in> ?xs" unfolding succs_def by blast
thus ?thesis ..
qed
qed
thus "succs (x#xs) n \<subseteq> ?x \<union> ?xs" ..
have "p \<in> succs (x#xs) n" if assm: "p \<in> ?x \<or> p \<in> ?xs" for p
proof -
from assm show ?thesis
proof
assume "p \<in> ?x" thus ?thesis by (fastforce simp: succs_def)
next
assume "p \<in> ?xs"
then obtain i where "?isuccs p xs (1+n) i"
unfolding succs_def by auto
hence "?isuccs p (x#xs) n (1+i)"
by (simp add: algebra_simps)
thus ?thesis unfolding succs_def by blast
qed
qed
thus "?x \<union> ?xs \<subseteq> succs (x#xs) n" by blast
qed
lemma succs_iexec1:
assumes "c' = iexec (P!!i) (i, s, stk)" "0 \<le> i" "i < size P"
shows "fst c' \<in> succs P 0"
using assms by (cases "P !! i", auto simp: succs_def isuccs_def)
lemma succs_shift:
"(p - n \<in> succs P 0) = (p \<in> succs P n)"
by (fastforce simp: succs_def isuccs_def split: instr.split)
lemma inj_op_plus [simp]:
"inj ((+) (i::int))"
by (rule Fun.cancel_semigroup_add_class.inj_add_left)
lemma succs_set_shift [simp]:
"(+) i ` succs xs 0 = succs xs i"
by (force simp: succs_shift [where n=i, symmetric] intro: set_eqI)
lemma succs_append [simp]:
"succs (xs @ ys) n = succs xs n \<union> succs ys (n + size xs)"
by (induct xs arbitrary: n) (auto simp: succs_Cons algebra_simps)
lemma exits_append [simp]:
"exits (xs @ ys) = exits xs \<union> ((+) (size xs)) ` exits ys -
{0..<size xs + size ys}"
by (auto simp: exits_def image_set_diff)
lemma exits_single:
"exits [x] = isuccs x 0 - {0}"
by (auto simp: exits_def succs_def)
lemma exits_Cons:
"exits (x # xs) = (isuccs x 0 - {0}) \<union> ((+) 1) ` exits xs -
{0..<1 + size xs}"
using exits_append [of "[x]" xs]
by (simp add: exits_single)
lemma exits_empty [iff]: "exits [] = {}" by (simp add: exits_def)
lemma exits_simps [simp]:
"exits [ADD] = {1}"
"exits [LOADI v] = {1}"
"exits [LOAD x] = {1}"
"exits [STORE x] = {1}"
"i \<noteq> -1 \<Longrightarrow> exits [JMP i] = {1 + i}"
"i \<noteq> -1 \<Longrightarrow> exits [JMPGE i] = {1 + i, 1}"
"i \<noteq> -1 \<Longrightarrow> exits [JMPLESS i] = {1 + i, 1}"
by (auto simp: exits_def)
lemma acomp_succs [simp]:
"succs (acomp a) n = {n + 1 .. n + size (acomp a)}"
by (induct a arbitrary: n) auto
lemma acomp_size:
"(1::int) \<le> size (acomp a)"
by (induct a) auto
(* consequence of acomp_succs *)
lemma acomp_exits [simp]:
"exits (acomp a) = {size (acomp a)}"
using [[simp_trace]]
by (auto simp: exits_def acomp_size)
(* successors of bcomp bounded above by bcomp instructions themselves (plus one),
and the jumped-to address *)
lemma bcomp_succs: "0 \<le> i \<Longrightarrow>
succs (bcomp b f i) n \<subseteq> {n..n + size (bcomp b f i)} \<union> {n + i + size (bcomp b f i)}"
proof (induction b arbitrary: f i n)
case (And b1 b2)
from And.prems
show ?case
by (cases f)
(auto dest: And.IH(1) [THEN subsetD, rotated]
And.IH(2) [THEN subsetD, rotated])
qed auto
lemmas bcomp_succsD [dest!] = bcomp_succs [THEN subsetD, rotated]
lemma bcomp_exits:
"0 \<le> i \<Longrightarrow>
exits (bcomp b f i) \<subseteq> {size (bcomp b f i), i + size (bcomp b f i)}"
by (auto simp: exits_def)
lemma bcomp_exitsD [dest!]:
"p \<in> exits (bcomp b f i) \<Longrightarrow> 0 \<le> i \<Longrightarrow>
p = size (bcomp b f i) \<or> p = i + size (bcomp b f i)"
using bcomp_exits by auto
lemma ccomp_succs:
"succs (ccomp c) n \<subseteq> {n..n + size (ccomp c)}"
proof (induction c arbitrary: n)
case SKIP thus ?case by simp
next
case Assign thus ?case by simp
next
case (Seq c1 c2)
from Seq.prems
show ?case
by (fastforce dest: Seq.IH [THEN subsetD])
next
case (If b c1 c2)
from If.prems
show ?case
by (auto dest!: If.IH [THEN subsetD] simp: isuccs_def succs_Cons)
next
case (While b c)
from While.prems
show ?case by (auto dest!: While.IH [THEN subsetD])
next
case (Repeat c x2)
from Repeat.prems
show ?case by (auto dest!: Repeat.IH [THEN subsetD])
qed
lemma ccomp_exits:
"exits (ccomp c) \<subseteq> {size (ccomp c)}"
using ccomp_succs [of c 0] by (auto simp: exits_def)
lemma ccomp_exitsD [dest!]:
"p \<in> exits (ccomp c) \<Longrightarrow> p = size (ccomp c)"
using ccomp_exits by auto
subsection \<open>Splitting up machine executions\<close>
lemma exec1_split:
fixes i j :: int
shows
"P @ c @ P' \<turnstile> (size P + i, s) \<rightarrow> (j,s') \<Longrightarrow> 0 \<le> i \<Longrightarrow> i < size c \<Longrightarrow>
c \<turnstile> (i,s) \<rightarrow> (j - size P, s')"
proof -
assume assm: "P @ c @ P' \<turnstile> (size P + i, s) \<rightarrow> (j, s')" "0 \<le> i" "i < size c"
from assm(1) have "(\<exists>ii ss stk. (size P + i, s) = (ii, ss, stk) \<and>
(j, s') = iexec ((P @ c @ P') !! ii) (ii, ss, stk) \<and>
0 \<le> ii \<and> ii < size (P @ c @ P'))"
using exec1_def by simp
then obtain ii ss stk where assm1: "(size P + i, s) = (ii, ss, stk)"
"(j, s') = iexec ((P @ c @ P') !! ii) (ii, ss, stk)"
"0 \<le> ii" "ii < size (P @ c @ P')" by auto
from assm1(1) assm(2, 3) have "(P @ c @ P') !! ii = c !! i" by auto
with assm1(2) have "(j, s') = iexec (c !! i) (ii, ss, stk)" by simp
with assm1(1) have "(j, s') = iexec (c !! i) (size P + i, ss, stk)" by simp
then have "((- size P) + j, s') = iexec (c !! i) ((- size P) + (size P + i), ss, stk)"
using iexec_shift by (fastforce intro: iexec_shift)
then have "(j - size P, s') = iexec (c !! i) (i, ss, stk)" by simp
with assm(2, 3) assm1(1) show "c \<turnstile> (i, s) \<rightarrow> (j - size P, s')" by auto
qed
lemma exec_n_split:
fixes i j :: int
assumes "P @ c @ P' \<turnstile> (size P + i, s) \<rightarrow>^n (j, s')"
"0 \<le> i" "i < size c"
"j \<notin> {size P ..< size P + size c}"
shows "\<exists>s'' (i'::int) k m.
c \<turnstile> (i, s) \<rightarrow>^k (i', s'') \<and>
i' \<in> exits c \<and>
P @ c @ P' \<turnstile> (size P + i', s'') \<rightarrow>^m (j, s') \<and>
n = k + m"
using assms proof (induction n arbitrary: i j s)
case 0
thus ?case by simp
next
case (Suc n)
have i: "0 \<le> i" "i < size c" by fact+
from Suc.prems
have j: "\<not> (size P \<le> j \<and> j < size P + size c)" by simp
from Suc.prems
obtain i0 s0 where
step: "P @ c @ P' \<turnstile> (size P + i, s) \<rightarrow> (i0,s0)" and
rest: "P @ c @ P' \<turnstile> (i0,s0) \<rightarrow>^n (j, s')"
by clarsimp
from step i
have c: "c \<turnstile> (i,s) \<rightarrow> (i0 - size P, s0)" by (rule exec1_split)
have "i0 = size P + (i0 - size P) " by simp
then obtain j0::int where j0: "i0 = size P + j0" ..
note split_paired_Ex [simp del]
have ?case if assm: "j0 \<in> {0 ..< size c}"
proof -
from assm j0 j rest c show ?case
by (fastforce dest!: Suc.IH intro!: exec_Suc)
qed
moreover
have ?case if assm: "j0 \<notin> {0 ..< size c}"
proof -
from c j0 have "j0 \<in> succs c 0"
by (auto dest: succs_iexec1 simp: exec1_def simp del: iexec.simps)
with assm have "j0 \<in> exits c" by (simp add: exits_def)
with c j0 rest show ?case by fastforce
qed
ultimately
show ?case by cases
qed
lemma exec_n_drop_right:
fixes j :: int
assumes "c @ P' \<turnstile> (0, s) \<rightarrow>^n (j, s')" "j \<notin> {0..<size c}"
shows "\<exists>s'' i' k m.
(if c = [] then s'' = s \<and> i' = 0 \<and> k = 0
else c \<turnstile> (0, s) \<rightarrow>^k (i', s'') \<and>
i' \<in> exits c) \<and>
c @ P' \<turnstile> (i', s'') \<rightarrow>^m (j, s') \<and>
n = k + m"
using assms
by (cases "c = []")
(auto dest: exec_n_split [where P="[]", simplified])
text \<open>
Dropping the left context of a potentially incomplete execution of \<^term>\<open>c\<close>.
\<close>
lemma exec1_drop_left:
fixes i n :: int
assumes "P1 @ P2 \<turnstile> (i, s, stk) \<rightarrow> (n, s', stk')" and "size P1 \<le> i"
shows "P2 \<turnstile> (i - size P1, s, stk) \<rightarrow> (n - size P1, s', stk')"
proof -
have "i = size P1 + (i - size P1)" by simp
then obtain i' :: int where "i = size P1 + i'" ..
moreover
have "n = size P1 + (n - size P1)" by simp
then obtain n' :: int where "n = size P1 + n'" ..
ultimately
show ?thesis using assms
by (clarsimp simp: exec1_def simp del: iexec.simps)
qed
lemma exec_n_drop_left:
fixes i n :: int
assumes "P @ P' \<turnstile> (i, s, stk) \<rightarrow>^k (n, s', stk')"
"size P \<le> i" "exits P' \<subseteq> {0..}"
shows "P' \<turnstile> (i - size P, s, stk) \<rightarrow>^k (n - size P, s', stk')"
using assms proof (induction k arbitrary: i s stk)
case 0 thus ?case by simp
next
case (Suc k)
from Suc.prems
obtain i' s'' stk'' where
step: "P @ P' \<turnstile> (i, s, stk) \<rightarrow> (i', s'', stk'')" and
rest: "P @ P' \<turnstile> (i', s'', stk'') \<rightarrow>^k (n, s', stk')"
by auto
from step \<open>size P \<le> i\<close>
have *: "P' \<turnstile> (i - size P, s, stk) \<rightarrow> (i' - size P, s'', stk'')"
by (rule exec1_drop_left)
then have "i' - size P \<in> succs P' 0"
by (fastforce dest!: succs_iexec1 simp: exec1_def simp del: iexec.simps)
with \<open>exits P' \<subseteq> {0..}\<close>
have "size P \<le> i'" by (auto simp: exits_def)
from rest this \<open>exits P' \<subseteq> {0..}\<close>
have "P' \<turnstile> (i' - size P, s'', stk'') \<rightarrow>^k (n - size P, s', stk')"
by (rule Suc.IH)
with * show ?case by auto
qed
lemmas exec_n_drop_Cons =
exec_n_drop_left [where P="[instr]", simplified] for instr
definition
"closed P \<longleftrightarrow> exits P \<subseteq> {size P}"
lemma ccomp_closed [simp, intro!]: "closed (ccomp c)"
using ccomp_exits by (auto simp: closed_def)
lemma acomp_closed [simp, intro!]: "closed (acomp c)"
by (simp add: closed_def)
lemma exec_n_split_full:
fixes j :: int
assumes exec: "P @ P' \<turnstile> (0,s,stk) \<rightarrow>^k (j, s', stk')"
assumes P: "size P \<le> j"
assumes closed: "closed P"
assumes exits: "exits P' \<subseteq> {0..}"
shows "\<exists>k1 k2 s'' stk''. P \<turnstile> (0,s,stk) \<rightarrow>^k1 (size P, s'', stk'') \<and>
P' \<turnstile> (0,s'',stk'') \<rightarrow>^k2 (j - size P, s', stk')"
proof (cases "P")
case Nil with exec
show ?thesis by fastforce
next
case Cons
hence "0 < size P" by simp
with exec P closed
obtain k1 k2 s'' stk'' where
1: "P \<turnstile> (0,s,stk) \<rightarrow>^k1 (size P, s'', stk'')" and
2: "P @ P' \<turnstile> (size P,s'',stk'') \<rightarrow>^k2 (j, s', stk')"
by (auto dest!: exec_n_split [where P="[]" and i=0, simplified]
simp: closed_def)
moreover
have "j = size P + (j - size P)" by simp
then obtain j0 :: int where "j = size P + j0" ..
ultimately
show ?thesis using exits
by (fastforce dest: exec_n_drop_left)
qed
subsection \<open>Correctness theorem\<close>
lemma acomp_neq_Nil [simp]:
"acomp a \<noteq> []"
by (induct a) auto
lemma acomp_exec_n [dest!]:
"acomp a \<turnstile> (0,s,stk) \<rightarrow>^n (size (acomp a),s',stk') \<Longrightarrow>
s' = s \<and> stk' = aval a s#stk"
proof (induction a arbitrary: n s' stk stk')
case (Plus a1 a2)
let ?sz = "size (acomp a1) + (size (acomp a2) + 1)"
from Plus.prems
have "acomp a1 @ acomp a2 @ [ADD] \<turnstile> (0,s,stk) \<rightarrow>^n (?sz, s', stk')"
by (simp add: algebra_simps)
then obtain n1 s1 stk1 n2 s2 stk2 n3 where
"acomp a1 \<turnstile> (0,s,stk) \<rightarrow>^n1 (size (acomp a1), s1, stk1)"
"acomp a2 \<turnstile> (0,s1,stk1) \<rightarrow>^n2 (size (acomp a2), s2, stk2)"
"[ADD] \<turnstile> (0,s2,stk2) \<rightarrow>^n3 (1, s', stk')"
by (auto dest!: exec_n_split_full)
thus ?case by (fastforce dest: Plus.IH simp: exec_n_simps exec1_def)
qed (auto simp: exec_n_simps exec1_def)
lemma bcomp_split:
fixes i j :: int
assumes "bcomp b f i @ P' \<turnstile> (0, s, stk) \<rightarrow>^n (j, s', stk')"
"j \<notin> {0..<size (bcomp b f i)}" "0 \<le> i"
shows "\<exists>s'' stk'' (i'::int) k m.
bcomp b f i \<turnstile> (0, s, stk) \<rightarrow>^k (i', s'', stk'') \<and>
(i' = size (bcomp b f i) \<or> i' = i + size (bcomp b f i)) \<and>
bcomp b f i @ P' \<turnstile> (i', s'', stk'') \<rightarrow>^m (j, s', stk') \<and>
n = k + m"
using assms by (cases "bcomp b f i = []") (fastforce dest!: exec_n_drop_right)+
lemma bcomp_exec_n [dest]:
fixes i j :: int
assumes "bcomp b f j \<turnstile> (0, s, stk) \<rightarrow>^n (i, s', stk')"
"size (bcomp b f j) \<le> i" "0 \<le> j"
shows "i = size(bcomp b f j) + (if f = bval b s then j else 0) \<and>
s' = s \<and> stk' = stk"
using assms proof (induction b arbitrary: f j i n s' stk')
case Bc thus ?case
by (simp split: if_split_asm add: exec_n_simps exec1_def)
next
case (Not b)
from Not.prems show ?case
by (fastforce dest!: Not.IH)
next
case (And b1 b2)
let ?b2 = "bcomp b2 f j"
let ?m = "if f then size ?b2 else size ?b2 + j"
let ?b1 = "bcomp b1 False ?m"
have j: "size (bcomp (And b1 b2) f j) \<le> i" "0 \<le> j" by fact+
from And.prems
obtain s'' stk'' and i'::int and k m where
b1: "?b1 \<turnstile> (0, s, stk) \<rightarrow>^k (i', s'', stk'')"
"i' = size ?b1 \<or> i' = ?m + size ?b1" and
b2: "?b2 \<turnstile> (i' - size ?b1, s'', stk'') \<rightarrow>^m (i - size ?b1, s', stk')"
by (auto dest!: bcomp_split dest: exec_n_drop_left)
from b1 j
have "i' = size ?b1 + (if \<not>bval b1 s then ?m else 0) \<and> s'' = s \<and> stk'' = stk"
by (auto dest!: And.IH)
with b2 j
show ?case
by (fastforce dest!: And.IH simp: exec_n_end split: if_split_asm)
next
case Less
thus ?case by (auto dest!: exec_n_split_full simp: exec_n_simps exec1_def) (* takes time *)
qed
lemma ccomp_empty [elim!]:
"ccomp c = [] \<Longrightarrow> (c,s) \<Rightarrow> s"
by (induct c) auto
declare assign_simp [simp]
lemma ccomp_exec_n:
"ccomp c \<turnstile> (0,s,stk) \<rightarrow>^n (size(ccomp c),t,stk')
\<Longrightarrow> (c,s) \<Rightarrow> t \<and> stk'=stk"
proof (induction c arbitrary: s t stk stk' n)
case SKIP
thus ?case by auto
next
case (Assign x a)
thus ?case
by simp (fastforce dest!: exec_n_split_full simp: exec_n_simps exec1_def)
next
case (Seq c1 c2)
thus ?case by (fastforce dest!: exec_n_split_full)
next
case (If b c1 c2)
note If.IH [dest!]
let ?if = "IF b THEN c1 ELSE c2"
let ?cs = "ccomp ?if"
let ?bcomp = "bcomp b False (size (ccomp c1) + 1)"
from \<open>?cs \<turnstile> (0,s,stk) \<rightarrow>^n (size ?cs,t,stk')\<close>
obtain i' :: int and k m s'' stk'' where
cs: "?cs \<turnstile> (i',s'',stk'') \<rightarrow>^m (size ?cs,t,stk')" and
"?bcomp \<turnstile> (0,s,stk) \<rightarrow>^k (i', s'', stk'')"
"i' = size ?bcomp \<or> i' = size ?bcomp + size (ccomp c1) + 1"
by (auto dest!: bcomp_split)
hence i':
"s''=s" "stk'' = stk"
"i' = (if bval b s then size ?bcomp else size ?bcomp+size(ccomp c1)+1)"
by auto
with cs have cs':
"ccomp c1@JMP (size (ccomp c2))#ccomp c2 \<turnstile>
(if bval b s then 0 else size (ccomp c1)+1, s, stk) \<rightarrow>^m
(1 + size (ccomp c1) + size (ccomp c2), t, stk')"
by (fastforce dest: exec_n_drop_left simp: exits_Cons isuccs_def algebra_simps)
show ?case
proof (cases "bval b s")
case True with cs'
show ?thesis
by simp
(fastforce dest: exec_n_drop_right
split: if_split_asm
simp: exec_n_simps exec1_def)
next
case False with cs'
show ?thesis
by (auto dest!: exec_n_drop_Cons exec_n_drop_left
simp: exits_Cons isuccs_def)
qed
next
case (While b c)
from While.prems
show ?case
proof (induction n arbitrary: s rule: nat_less_induct)
case (1 n)
have ?case if assm: "\<not> bval b s"
proof -
from assm "1.prems"
show ?case
by simp (fastforce dest!: bcomp_split simp: exec_n_simps)
qed
moreover
have ?case if b: "bval b s"
proof -
let ?c0 = "WHILE b DO c"
let ?cs = "ccomp ?c0"
let ?bs = "bcomp b False (size (ccomp c) + 1)"
let ?jmp = "[JMP (-((size ?bs + size (ccomp c) + 1)))]"
from "1.prems" b
obtain k where
cs: "?cs \<turnstile> (size ?bs, s, stk) \<rightarrow>^k (size ?cs, t, stk')" and
k: "k \<le> n"
by (fastforce dest!: bcomp_split)
show ?case
proof cases
assume "ccomp c = []"
with cs k
obtain m where
"?cs \<turnstile> (0,s,stk) \<rightarrow>^m (size (ccomp ?c0), t, stk')"
"m < n"
by (auto simp: exec_n_step [where k=k] exec1_def)
with "1.IH"
show ?case by blast
next