forked from amforte/Topographic-Analysis-Kit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
KsnChiBatch.m
1052 lines (922 loc) · 35.6 KB
/
KsnChiBatch.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function [varargout]=KsnChiBatch(DEM,FD,A,S,product,varargin)
%
% Usage:
% KsnChiBatch(DEM,FD,A,S,product);
% KsnChiBatch(DEM,FD,A,S,product,'name',value...);
% [outputs]=KsnChiBatch(DEM,FD,A,S,product,'output',true,...);
%
% Description:
% Function to produce channel steepness, chi maps or chi grids for all channels within a DEM
%
% Reqiured Inputs:
% DEM - DEM Grid Object (assumes unconditioned DEM)
% FD - FLOW object
% A - GRID object of flow accumulations
% S - STREAM object
% product - switch to determine which products to produce
% 'ksn' - ksn map as a shapefile
% 'ksngrid' - ascii file with ksn interpolated via averaging in a moving circular window at all points in a grid
% 'chimap' - ascii file with chi calculated in channel networks
% 'chigrid' - ascii file with chi calculate at all points in a grid
% 'chi' - results for both chimap and chigrid
% 'all' - ksn, ksngrid, chimap, and chigrids
%
% Optional Inputs:
% conditioned_DEM [] - option to provide a hydrologically conditioned DEM for use in this function (do not provide a conditoned DEM
% for the main required DEM input!) which will be used for extracting elevations. See 'ConditionDEM' function for options for making a
% hydrological conditioned DEM. If no input is provided the code defaults to using the mincosthydrocon function.
% file_name_prefix ['batch'] - prefix for outputs, will append the type of output, i.e. 'ksn', 'chimap', etc
% smooth_distance [1000] - distance in map units over which to smooth ksn measures when converting to shapefile
% ref_concavity [0.50] - reference concavity (as a positive value) for calculating ksn
% output [false]- switch to either output matlab files to the workspace (true) or to not only save the specified files
% without any workspace output (false). The number of outputs will depend on the 'product' input.
% 'ksn' - [KSNG,ksn_ms] where KSNG is a GRIDobj with ksn values along the stream network and ksn_ms is the mapstructure suitable for creating
% a shapefile. If a precip_grid is provided, then the outputs will be [KSNG,ksn_ms,KSNQG,ksnq_ms] where the second two are the
% precipitation weighted ksn-q values (e.g. Adams et al, 2020)
% 'ksngrid' - [KSNgrid,KSNstdGrid] where KSNgrid is a GRIDobj of interpolated ksn values and KSNstdGrid is a GRIDobj of the standard deviation
% of ksn within the specified radius. If a precip_grid is provided, then the outputs will be be [KSNgrid,KSNstdGrid,KSNQgrid,KSNQstdGrid]
% 'chimap' - [ChiMap] where ChiMap is a GRIDobj with chi values along the stream network
% 'chigrid' - [ChiGrid] where ChiGrid is a GRIDobj with chi values across the entire grid
% 'chi' - [ChiMap,ChiGrid]
% 'all' - [KSNG,ksn_ms,KSNGrid,KSNstdGrid,ChiMap,ChiGrid], if a precp_grid is provided, then the outputs will be
% [KSNG,ksn_ms,KSNGrid,KSNstdGrid,ChiMap,ChiGrid,KSNQG,ksnq_ms,KSNQGrid,KSNQstdGrid]
% ksn_method [quick] - switch between method to calculate ksn values, options are 'quick', 'trunk', or 'trib', the 'trib' method takes 3-4 times longer
% than the 'quick' method. In most cases, the 'quick' method works well, but if values near tributary junctions are important, then 'trib'
% may be better as this calculates ksn values for individual channel segments individually. The 'trunk' option calculates steepness values
% of large streams independently (streams considered as trunks are controlled by the stream order value supplied to 'min_order'). The 'trunk' option
% may be of use if you notice anomaoloulsy high channel steepness values on main trunk streams that can result because of the way values are reach
% averaged.
% precip_grid [] - optional input of a GRIDobj of precipitation. If you provide an argument for this, there will be additional outputs corresponding
% to ksn-q values (see Adams et al, 2020), i.e. a precipitation weighted ksn value. DO NOT provide both an optional precipitation grid here and a flow
% accumulation grid "A" which is precipitation weighted (which you will get if you provide a precip_grid when running MakeStreams) as this will produce
% erroneous values. The precip_grid input should cover the same area (or larger) than the provided DEM, but does not need to have the same cellsize as the
% function will resample the precip_grid if necessary.
% min_order [4] - minimum stream order for a stream to be considered a trunk stream, only used if 'ksn_method' is set to 'trunk'
% outlet_level_method [] - parameter to control how stream network outlet level is adjusted. Options for control of outlet elevation are:
% 'elevation' - extract streams only above a given elevation (provided by the user using the 'min_elevation' parameter) to ensure that base level
% elevation for all streams is uniform. If the provided elevation is too low (i.e. some outlets of the unaltered stream network are above this
% elevation) then a warning will be displayed, but the code will still run.
% 'max_out_elevation' - uses the maximum elevation of all stream outlets to extract streams only above this elevation, only valid for options that operate
% on streamlines only (i.e. will not work with 'ksngrid' or 'chigrid').
% min_elevation [] - parameter to set minimum elevation for outlet level, required if 'outlet_level_method' is set to 'elevation'
% complete_networks_only [true] - if true (default) the code will only populate portions of the stream network that are complete. Generally, this
% option should probably be left as true (i.e. chi will not be accurate if drainage area is not accurate), but this can be overly agressive
% on certain DEMs and when used in tandem with 'min_elevation', it can be slow to calculate as it requires recalculation of the FLOWobj.
% interp_value [0.1] - value (between 0 and 1) used for interpolation parameter in mincosthydrocon (not used if user provides a conditioned DEM)
% radius [5000] - radius of circular, moving area over which to average ksn values to produced an interpolated ksn grid if product is set to 'ksngrid' or 'all'
% error_type ['std'] - controls whether the second output when calculating a KsnGrid is the standard deviation (default) or standard error. To calculate
% standard error instead of standard deviation, provide 'std_error' as the optional input.
%
% Notes:
% Please be aware that the production of the ksngrid and/or chigrid can be time consuming, so be patient...
%
% Example:
% KsnChiBatch(DEM,FD,A,S,'ksn');
% [KSNG,ksn_ms]=KsnChiBatch(DEM,FD,A,S,'ksn','output',true,'theta_ref',0.55);
% [KSNG,ksn_ms,KSNQG,ksnq_ms]=KsnChiBatch(DEM,FD,A,S,'ksn','output',true,'theta_ref',0.45,'precip_grid',PRECIP);
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function Written by Adam M. Forte - Updated : 10/17/20 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Parse Inputs
p = inputParser;
p.FunctionName = 'KsnChiBatch';
addRequired(p,'DEM',@(x) isa(x,'GRIDobj'));
addRequired(p,'FD', @(x) isa(x,'FLOWobj'));
addRequired(p,'A', @(x) isa(x,'GRIDobj'));
addRequired(p,'S',@(x) isa(x,'STREAMobj'));
addRequired(p,'product',@(x) ischar(validatestring(x,{'ksn','ksngrid','chimap','chigrid','chi','all'})));
addParameter(p,'file_name_prefix','batch',@(x) ischar(x));
addParameter(p,'smooth_distance',1000,@(x) isscalar(x) && isnumeric(x));
addParameter(p,'ref_concavity',0.50,@(x) isscalar(x) && isnumeric(x));
addParameter(p,'output',false,@(x) isscalar(x) && islogical(x));
addParameter(p,'ksn_method','quick',@(x) ischar(validatestring(x,{'quick','trunk','trib'})));
addParameter(p,'precip_grid',[],@(x) isa(x,'GRIDobj') || isempty(x));
addParameter(p,'min_order',4,@(x) isscalar(x) && isnumeric(x));
addParameter(p,'outlet_level_method',[],@(x) isempty(x) || ischar(validatestring(x,{'elevation','max_out_elevation'})));
addParameter(p,'min_elevation',[],@(x) isnumeric(x) || isempty(x));
addParameter(p,'conditioned_DEM',[],@(x) isa(x,'GRIDobj') || isempty(x));
addParameter(p,'interp_value',0.1,@(x) isnumeric(x) && x>=0 && x<=1);
addParameter(p,'complete_networks_only',true,@(x) isscalar(x) && islogical(x));
addParameter(p,'radius',5000,@(x) isscalar(x) && isnumeric(x));
addParameter(p,'error_type','std',@(x) ischar(validatestring(x,{'std','std_error'})));
parse(p,DEM,FD,A,S,product,varargin{:});
DEM=p.Results.DEM;
FD=p.Results.FD;
A=p.Results.A;
S=p.Results.S;
product=p.Results.product;
file_name_prefix=p.Results.file_name_prefix;
segment_length=p.Results.smooth_distance;
theta_ref=p.Results.ref_concavity;
output=p.Results.output;
ksn_method=p.Results.ksn_method;
precip_grid=p.Results.precip_grid;
min_order=p.Results.min_order;
blm=p.Results.outlet_level_method;
me=p.Results.min_elevation;
iv=p.Results.interp_value;
DEMc=p.Results.conditioned_DEM;
cno=p.Results.complete_networks_only;
radius=p.Results.radius;
error_type=p.Results.error_type;
% Check that cut off values have been provided if base level
if strcmp(blm,'max_out_elevation') & (strcmp(product,'chigrid') | strcmp(product,'ksngrid') | strcmp(product,'all'))
if isdeployed
warndlg('"max_out_elevation" is not a valid choice for a continuous gridded product, ignoring this input')
else
warning('"max_out_elevation" is not a valid choice for a continuous gridded product, ignoring this input')
end
elseif strcmp(blm,'elevation') & isempty(me)
if isdeployed
warndlg('Selected outlet level adjust method "elevation" requires that you provide an input for parameter "min_elevation", running without baselevel control')
else
warning('Selected outlet level adjust method "elevation" requires that you provide an input for parameter "min_elevation", running without baselevel control');
end
blm=[];
end
% Check for precip grid and product, resample if necessary, and make precip weighted flow accumulation GRIDobj
if ~isempty(precip_grid) & (strcmp(product,'ksn') | strcmp(product,'ksngrid') | strcmp(product,'all'));
disp('Calculating precpitation weighted flow accumulation grid')
if ~validatealignment(precip_grid,DEM);
precip_grid=resample(precip_grid,DEM,'nearest');
end
WA=flowacc(FD,precip_grid);
q_flag=true;
else
q_flag=false;
end
switch product
case 'ksn'
disp('Calculating channel steepness')
if strcmp(blm,'elevation')
[S]=DTSetOutlet(DEM,FD,A,S,blm,'complete_networks_only',cno,'min_elevation',me);
elseif strcmp(blm,'max_out_elevation')
[S]=DTSetOutlet(DEM,FD,A,S,blm,'complete_networks_only',cno);
elseif isempty(blm) & cno
[S]=DTSetOutlet(DEM,FD,A,S,'complete_only','complete_networks_only',cno);
end
% Hydrologically condition dem
if isempty(DEMc)
zc=mincosthydrocon(S,DEM,'interp',iv);
DEMc=GRIDobj(DEM);
DEMc.Z(DEMc.Z==0)=NaN;
DEMc.Z(S.IXgrid)=zc;
end
switch ksn_method
case 'quick'
[ksn_ms]=KSN_Quick(DEM,DEMc,A,S,theta_ref,segment_length);
case 'trunk'
[ksn_ms]=KSN_Trunk(DEM,DEMc,A,S,theta_ref,segment_length,min_order);
case 'trib'
[ksn_ms]=KSN_Trib(DEM,DEMc,FD,A,S,theta_ref,segment_length);
end
disp('Writing ARC files')
out_file=[file_name_prefix '_ksn.shp'];
shapewrite(ksn_ms,out_file);
if q_flag
disp('Calculating precipitation weighted channel steepness')
switch ksn_method
case 'quick'
[ksnq_ms]=KSN_Quick(DEM,DEMc,WA,S,theta_ref,segment_length);
case 'trunk'
[ksnq_ms]=KSN_Trunk(DEM,DEMc,WA,S,theta_ref,segment_length,min_order);
case 'trib'
[ksnq_ms]=KSN_Trib(DEM,DEMc,FD,WA,S,theta_ref,segment_length);
end
disp('Writing ARC files')
out_file=[file_name_prefix '_ksnq.shp'];
shapewrite(ksnq_ms,out_file);
end
switch output
case true
if q_flag
KSNG=GRIDobj(DEM);
KSNG.Z(:,:)=NaN;
for ii=1:numel(ksn_ms)
ix=coord2ind(DEM,ksn_ms(ii).X,ksn_ms(ii).Y);
KSNG.Z(ix)=ksn_ms(ii).ksn;
end
KSNQG=GRIDobj(DEM);
KSNQG.Z(:,:)=NaN;
for ii=1:numel(ksnq_ms)
ix=coord2ind(DEM,ksnq_ms(ii).X,ksnq_ms(ii).Y);
KSNQG.Z(ix)=ksnq_ms(ii).ksn;
end
varargout{1}=KSNG;
varargout{2}=ksn_ms;
varargout{3}=KSNQG;
varargout{4}=ksnq_ms;
else
KSNG=GRIDobj(DEM);
KSNG.Z(:,:)=NaN;
for ii=1:numel(ksn_ms)
ix=coord2ind(DEM,ksn_ms(ii).X,ksn_ms(ii).Y);
KSNG.Z(ix)=ksn_ms(ii).ksn;
end
varargout{1}=KSNG;
varargout{2}=ksn_ms;
end
end
case 'ksngrid'
disp('Calculating channel steepness')
if strcmp(blm,'elevation')
IDX=DEM<me;
DEM.Z(IDX.Z)=NaN;
else
IDX=GRIDobj(DEM,'logical');
end
if isempty(DEMc)
zc=mincosthydrocon(S,DEM,'interp',iv);
DEMc=GRIDobj(DEM);
DEMc.Z(DEMc.Z==0)=NaN;
DEMc.Z(S.IXgrid)=zc;
else
DEMc.Z(IDX.Z)=NaN;
end
if strcmp(blm,'elevation')
[S]=DTSetOutlet(DEM,FD,A,S,blm,'complete_networks_only',cno,'min_elevation',me);
elseif strcmp(blm,'max_out_elevation')
[S]=DTSetOutlet(DEM,FD,A,S,blm,'complete_networks_only',cno);
elseif isempty(blm) & cno
[S]=DTSetOutlet(DEM,FD,A,S,'complete_only','complete_networks_only',cno);
end
switch ksn_method
case 'quick'
[ksn_ms]=KSN_Quick(DEM,DEMc,A,S,theta_ref,segment_length);
case 'trunk'
[ksn_ms]=KSN_Trunk(DEM,DEMc,A,S,theta_ref,segment_length,min_order);
case 'trib'
[ksn_ms]=KSN_Trib(DEM,DEMc,FD,A,S,theta_ref,segment_length);
end
disp('Calculating gridded channel steepness')
[KSNGrid,KSNstdGrid]=KsnAvg(DEM,ksn_ms,radius,error_type);
disp('Writing ARC files')
out_file_ksng=[file_name_prefix '_ksngrid.txt'];
out_file_ksnstd=[file_name_prefix '_ksnstdgrid.txt'];
GRIDobj2ascii(KSNGrid,out_file_ksng);
GRIDobj2ascii(KSNstdGrid,out_file_ksnstd);
if q_flag
disp('Calculating precipitation weighted channel steepness')
switch ksn_method
case 'quick'
[ksnq_ms]=KSN_Quick(DEM,DEMc,WA,S,theta_ref,segment_length);
case 'trunk'
[ksnq_ms]=KSN_Trunk(DEM,DEMc,WA,S,theta_ref,segment_length,min_order);
case 'trib'
[ksnq_ms]=KSN_Trib(DEM,DEMc,FD,WA,S,theta_ref,segment_length);
end
disp('Calculating precipitation weighted gridded channel steepness')
[KSNQGrid,KSNQstdGrid]=KsnAvg(DEM,ksnq_ms,radius,error_type);
disp('Writing ARC files')
out_file_ksng=[file_name_prefix '_ksnqgrid.txt'];
out_file_ksnstd=[file_name_prefix '_ksnqstdgrid.txt'];
GRIDobj2ascii(KSNQGrid,out_file_ksng);
GRIDobj2ascii(KSNQstdGrid,out_file_ksnstd);
end
switch output
case true
if q_flag
varargout{1}=KSNGrid;
varargout{2}=KSNstdGrid;
varargout{3}=KSNQGrid;
varargout{4}=KSNQstdGrid;
else
varargout{1}=KSNGrid;
varargout{2}=KSNstdGrid;
end
end
case 'chimap'
if strcmp(blm,'elevation')
[S]=DTSetOutlet(DEM,FD,A,S,blm,'complete_networks_only',cno,'min_elevation',me);
elseif strcmp(blm,'max_out_elevation')
[S]=DTSetOutlet(DEM,FD,A,S,blm,'complete_networks_only',cno);
elseif isempty(blm) & cno
[S]=DTSetOutlet(DEM,FD,A,S,'complete_only','complete_networks_only',cno);
end
disp('Calculating chi map');
[ChiMap]=MakeChiMap(DEM,FD,A,S,theta_ref);
disp('Writing ARC files')
out_file_cm=[file_name_prefix '_chimap.txt'];
GRIDobj2ascii(ChiMap,out_file_cm);
switch output
case true
varargout{1}=ChiMap;
end
case 'chigrid'
disp('Calculating chi grid');
[ChiGrid]=MakeChiGrid(DEM,FD,'theta_ref',theta_ref,'complete_networks_only',cno,'min_elevation',me);
disp('Writing ARC files')
out_file=[file_name_prefix '_chigrid.txt'];
GRIDobj2ascii(ChiGrid,out_file);
switch output
case true
varargout{1}=ChiGrid;
end
case 'chi'
if strcmp(blm,'elevation')
[S]=DTSetOutlet(DEM,FD,A,S,blm,'complete_networks_only',cno,'min_elevation',me);
elseif strcmp(blm,'max_out_elevation')
[S]=DTSetOutlet(DEM,FD,A,S,blm,'complete_networks_only',cno);
elseif isempty(blm) & cno
[S]=DTSetOutlet(DEM,FD,A,S,'complete_only','complete_networks_only',cno);
end
disp('Calculating chi map');
[ChiMap]=MakeChiMap(DEM,FD,A,S,theta_ref);
disp('Calculating chi grid');
[ChiGrid]=MakeChiGrid(DEM,FD,'theta_ref',theta_ref,'complete_networks_only',cno,'min_elevation',me);
disp('Writing ARC files')
out_file_cg=[file_name_prefix '_chigrid.txt'];
GRIDobj2ascii(ChiGrid,out_file_cg);
out_file_cm=[file_name_prefix '_chimap.txt'];
GRIDobj2ascii(ChiMap,out_file_cm);
switch output
case true
varargout{1}=ChiMap;
varargout{2}=ChiGrid;
end
case 'all'
if strcmp(blm,'elevation')
IDX=DEM<me;
DEM.Z(IDX.Z)=NaN;
else
IDX=GRIDobj(DEM,'logical');
end
disp('Calculating channel steepness')
if strcmp(blm,'elevation')
[S]=DTSetOutlet(DEM,FD,A,S,blm,'complete_networks_only',cno,'min_elevation',me);
elseif strcmp(blm,'max_out_elevation')
[S]=DTSetOutlet(DEM,FD,A,S,blm,'complete_networks_only',cno);
elseif isempty(blm) & cno
[S]=DTSetOutlet(DEM,FD,A,S,'complete_only','complete_networks_only',cno);
end
if isempty(DEMc)
zc=mincosthydrocon(S,DEM,'interp',iv);
DEMc=GRIDobj(DEM);
DEMc.Z(DEMc.Z==0)=NaN;
DEMc.Z(S.IXgrid)=zc;
else
DEMc.Z(IDX.Z)=NaN;
end
switch ksn_method
case 'quick'
[ksn_ms]=KSN_Quick(DEM,DEMc,A,S,theta_ref,segment_length);
case 'trunk'
[ksn_ms]=KSN_Trunk(DEM,DEMc,A,S,theta_ref,segment_length,min_order);
case 'trib'
[ksn_ms]=KSN_Trib(DEM,DEMc,FD,A,S,theta_ref,segment_length);
end
disp('Calculating gridded ksn grid')
[KSNGrid,KSNstdGrid]=KsnAvg(DEM,ksn_ms,radius,error_type);
if q_flag
disp('Calculating precipitation weighted channel steepness')
switch ksn_method
case 'quick'
[ksnq_ms]=KSN_Quick(DEM,DEMc,WA,S,theta_ref,segment_length);
case 'trunk'
[ksnq_ms]=KSN_Trunk(DEM,DEMc,WA,S,theta_ref,segment_length,min_order);
case 'trib'
[ksnq_ms]=KSN_Trib(DEM,DEMc,FD,WA,S,theta_ref,segment_length);
end
disp('Calculating precipitation weighted gridded channel steepness')
[KSNQGrid,KSNQstdGrid]=KsnAvg(DEM,ksnq_ms,radius,error_type);
end
disp('Calculating chi map');
[ChiMap]=MakeChiMap(DEM,FD,A,S,theta_ref);
disp('Calculating chi grid');
[ChiGrid]=MakeChiGrid(DEM,FD,'theta_ref',theta_ref,'complete_networks_only',cno,'min_elevation',me);
disp('Writing ARC files')
out_file_ksn=[file_name_prefix '_ksn.shp'];
shapewrite(ksn_ms,out_file_ksn);
out_file_ksng=[file_name_prefix '_ksngrid.txt'];
out_file_ksnstd=[file_name_prefix '_ksnstdgrid.txt'];
GRIDobj2ascii(KSNGrid,out_file_ksng);
GRIDobj2ascii(KSNstdGrid,out_file_ksnstd);
out_file_cg=[file_name_prefix '_chigrid.txt'];
GRIDobj2ascii(ChiGrid,out_file_cg);
out_file_cm=[file_name_prefix '_chimap.txt'];
GRIDobj2ascii(ChiMap,out_file_cm);
if q_flag
out_file_ksnqg=[file_name_prefix '_ksnqgrid.txt'];
out_file_ksnqstd=[file_name_prefix '_ksnqstdgrid.txt'];
GRIDobj2ascii(KSNQGrid,out_file_ksnqg);
GRIDobj2ascii(KSNQstdGrid,out_file_ksnqstd);
end
switch output
case true
if q_flag
KSNG=GRIDobj(DEM);
KSNG.Z(:,:)=NaN;
for ii=1:numel(ksn_ms)
ix=coord2ind(DEM,ksn_ms(ii).X,ksn_ms(ii).Y);
KSNG.Z(ix)=ksn_ms(ii).ksn;
end
varargout{1}=KSNG;
varargout{2}=ksn_ms;
varargout{3}=KSNGrid;
varargout{4}=KSNstdGrid;
varargout{5}=ChiMap;
varargout{6}=ChiGrid;
KSNQG=GRIDobj(DEM);
KSNQG.Z(:,:)=NaN;
for ii=1:numel(ksnq_ms)
ix=coord2ind(DEM,ksnq_ms(ii).X,ksnq_ms(ii).Y);
KSNQG.Z(ix)=ksnq_ms(ii).ksn;
end
varargout{7}=KSNQG;
varargout{8}=ksnq_ms;
varargout{9}=KSNQGrid;
varargout{10}=KSNQstdGrid;
else
KSNG=GRIDobj(DEM);
KSNG.Z(:,:)=NaN;
for ii=1:numel(ksn_ms)
ix=coord2ind(DEM,ksn_ms(ii).X,ksn_ms(ii).Y);
KSNG.Z(ix)=ksn_ms(ii).ksn;
end
varargout{1}=KSNG;
varargout{2}=ksn_ms;
varargout{3}=KSNGrid;
varargout{4}=KSNstdGrid;
varargout{5}=ChiMap;
varargout{6}=ChiGrid;
end
end
end
% Main Function End
end
function [SC]=DTSetOutlet(DEM,FD,A,S,method,varargin)
% Clone of Divide Tools 'SetOutlet' function.
% Parse Inputs
p = inputParser;
p.FunctionName = 'DTSetOutlet';
addRequired(p,'DEM',@(x) isa(x,'GRIDobj'));
addRequired(p,'FD', @(x) isa(x,'FLOWobj'));
addRequired(p,'A', @(x) isa(x,'GRIDobj'));
addRequired(p,'S',@(x) isa(x,'STREAMobj'));
addRequired(p,'method',@(x) ischar(validatestring(x,{'elevation','max_out_elevation','complete_only'})));
addParameter(p,'complete_networks_only',true,@(x) islogical(x) & isscalar(x));
addParameter(p,'min_elevation',[],@(x) isnumeric(x));
parse(p,DEM,FD,A,S,method,varargin{:});
DEM=p.Results.DEM;
FD=p.Results.FD;
A=p.Results.A;
S=p.Results.S;
method=p.Results.method;
cno=p.Results.complete_networks_only;
me=p.Results.min_elevation;
if ~cno & strcmp(method,'complete_networks_only')
if isdeployed
errordlg('Cannot set method to complete_only and set complete_network_only to false')
end
error('Cannot set method to complete_only and set complete_network_only to false');
end
if cno & ~strcmp(method,'complete_networks_only')
S=removeedgeeffects(S,FD,DEM);
end
%% Initiate graphical picker if no values for either min drainage area or min elevation are provided
if strcmp(method,'elevation') & isempty(me)
f1=figure(1);
set(f1,'Units','normalized','Position',[0.1 0.1 0.75 0.75]);
hold on
imageschs(DEM,DEM);
title('Zoom to desired view and press enter')
pause()
title('Pick point on DEM to select base level elevation');
[x,y]=ginput(1);
hold off
close(f1)
el_ix=coord2ind(DEM,x,y);
me=DEM.Z(el_ix);
disp(['Selected elevation is : ' num2str(me) ' m']);
end
%% Main switch between methods
switch method
case 'elevation'
st_el=getnal(S,DEM);
idx=st_el>=me;
IX=S.IXgrid(idx);
W=GRIDobj(DEM);
W.Z(IX)=1;
W.Z=logical(W.Z);
SC=STREAMobj(FD,W);
% Check to see if all outlets meet the condition
coix=streampoi(SC,'outlets','ix');
coel=DEM.Z(coix);
max_coel=max(coel);
if sum(coel>me)~=0 & ~cno
if isdeployed
warndlg(['One or more stream outlets are above the provided elevation, maximum outlet elevation is ' num2str(max_coel)])
else
warning(['One or more stream outlets are above the provided elevation, maximum outlet elevation is ' num2str(max_coel)]);
end
elseif sum(coel>me)~=0 & cno
[xo,yo]=getoutline(DEM,true);
% Control for incosistent output of getoutline
sz=size(xo);
if sz(1)==1 & sz(2)>1
[oxy]=[xo' yo'];
elseif sz(2)==1 & sz(1)>1
[oxy]=[xo yo];
end
[coxy]=streampoi(SC,'outlets','xy');
idx2=coel>me & ismember(coxy,oxy,'rows'); % Find streams with outlets greater than min elevation AND along boundary of DEM
coix(idx2)=[];
W=GRIDobj(DEM);
W.Z(coix)=1;
W.Z=logical(W.Z);
SC=modify(SC,'upstreamto',W);
end
case 'max_out_elevation'
coix=streampoi(S,'outlets','ix');
coel=DEM.Z(coix);
max_coel=max(coel);
st_el=getnal(S,DEM);
idx=st_el>=max_coel;
IX=S.IXgrid(idx);
W=GRIDobj(DEM);
W.Z(IX)=1;
W.Z=logical(W.Z);
SC=STREAMobj(FD,W);
case 'complete_only'
SC=removeedgeeffects(S,FD,DEM);
end
end
function [ChiOBJ]=MakeChiMap(DEM,FD,A,S,theta_ref);
C=chitransform(S,A,'mn',theta_ref,'a0',1);
% Make Empty GRIDobj
ChiOBJ=GRIDobj(DEM);
ChiOBJ.Z(ChiOBJ.Z==0)=NaN;
% Populate Grid
ChiOBJ.Z(S.IXgrid)=C;
end
function [ChiOBJ]=MakeChiGrid(DEM,FD,varargin)
% Clone of DivideTools 'ChiGrid' function with some options disabled.
% Parse Inputs
p = inputParser;
p.FunctionName = 'ChiGrid';
addRequired(p,'DEM',@(x) isa(x,'GRIDobj'));
addRequired(p,'FD', @(x) isa(x,'FLOWobj'));
addParameter(p,'theta_ref',0.5,@(x) isscalar(x) && isnumeric(x));
addParameter(p,'chi_ref_area',1,@(x) isscalar(x) && isnumeric(x));
addParameter(p,'complete_networks_only',true,@(x) isscalar(x) && islogical(x));
addParameter(p,'min_elevation',[],@(x) isnumeric(x));
parse(p,DEM,FD,varargin{:});
DEM=p.Results.DEM;
FD=p.Results.FD;
mn=p.Results.theta_ref;
a0=p.Results.chi_ref_area;
me=p.Results.min_elevation;
cno=p.Results.complete_networks_only;
if isempty(me)
abl=false;
else
abl=true;
end
if cno && ~abl
% Find nodes influenced by edge (From Topotoolbox blog)
IXE = GRIDobj(DEM,'logical');
IXE.Z(:,:) = true;
IXE.Z(2:end-1,2:end-1) = false;
IXE = influencemap(FD,IXE);
% Rest is mine
% Find drainage basins and all outlets
[DB,oixi]=drainagebasins(FD);
% Find where these share pixels other than the edge
db=DB.Z; db=db(3:end-2,3:end-2); % Move 2 pixels in to be conservative
ixe=IXE.Z; ixe=ixe(3:end-2,3:end-2); % Move 2 pixels in to be conservative
dbL=db(ixe);
% Compile list of drainage basins that are influenced by edge pixels
dbL=unique(dbL);
% Index list of outlets based on this
idxi=ismember(DB.Z(oixi),dbL);
oixi(idxi)=[];
% Remove drainage basins based on this
W=dependencemap(FD,oixi);
% DEM.Z(~mask.Z)=NaN;
% % Extract info from FLOWobj
% W=~isnan(DEM);
I=W.Z(FD.ix);
ix=double(FD.ix(I));
ixc=double(FD.ixc(I));
% Recalculate indices
IX = zeros(FD.size,'uint32');
IX(W.Z) = 1:nnz(W.Z);
ix = double(IX(ix));
ixc = double(IX(ixc));
I = ixc == 0;
ix(I) = [];
ixc(I) = [];
elseif cno && abl
% Recalculate flow directions after removing portions below min elevation
IX=DEM>me;
DEM.Z(IX.Z==false)=NaN;
FD=FLOWobj(DEM,'preprocess','carve');
% Find nodes influenced by edge (From Topotoolbox blog)
IXE = GRIDobj(DEM,'logical');
IXE.Z(:,:) = true;
IXE.Z(2:end-1,2:end-1) = false;
IXE = influencemap(FD,IXE);
% Rest is mine
% Find drainage basins and all outlets
[DB,oixi]=drainagebasins(FD);
% Find where these share pixels other than the edge
db=DB.Z; db=db(3:end-2,3:end-2); % Move 2 pixels in to be conservative
ixe=IXE.Z; ixe=ixe(3:end-2,3:end-2); % Move 2 pixels in to be conservative
dbL=db(ixe);
% Compile list of drainage basins that are influenced by edge pixels
dbL=unique(dbL);
% Index list of outlets based on this
idxi=ismember(DB.Z(oixi),dbL);
oixi(idxi)=[];
% Find offending drainage basins and recalculate indicies
W=dependencemap(FD,oixi);
I=W.Z(FD.ix);
ix=double(FD.ix(I));
ixc=double(FD.ixc(I));
% Recalculate indices
IX = zeros(FD.size,'uint32');
IX(W.Z) = 1:nnz(W.Z);
ix = double(IX(ix));
ixc = double(IX(ixc));
I = ixc == 0;
ix(I) = [];
ixc(I) = [];
elseif ~cno && ~abl
% Extract info from FLOWobj
W=~isnan(DEM);
I=W.Z(FD.ix);
ix=double(FD.ix(I));
ixc=double(FD.ixc(I));
% Recalculate indices
IX = zeros(FD.size,'uint32');
IX(W.Z) = 1:nnz(W.Z);
ix = double(IX(ix));
ixc = double(IX(ixc));
I = ixc == 0;
ix(I) = [];
ixc(I) = [];
elseif ~cno && abl
W=DEM>me;
I=W.Z(FD.ix);
ix=double(FD.ix(I));
ixc=double(FD.ixc(I));
% Recalculate indices
IX = zeros(FD.size,'uint32');
IX(W.Z) = 1:nnz(W.Z);
ix = double(IX(ix));
ixc = double(IX(ixc));
I = ixc == 0;
ix(I) = [];
ixc(I) = [];
end
% Generate coordinate list
IXgrid=find(W.Z);
[x,y]=ind2coord(DEM,IXgrid);
% Distance between two nodes throughout grid
d = nan(size(x));
dedge = sqrt((x(ixc)-x(ix)).^2 + (y(ixc)-y(ix)).^2);
d(:) = 0;
d(ix) = dedge;
% Cumulative trapezoidal numerical integration of draiange area grid
DA=flowacc(FD).*(DEM.cellsize^2);
da=DA.Z(IXgrid);
c = zeros(size(da));
da = ((a0) ./da).^mn;
for r = numel(ix):-1:1;
c(ix(r)) = c(ixc(r)) + (da(ixc(r))+(da(ix(r))-da(ixc(r)))/2)*d(ix(r));
end
% Generate and populate full chi grid
ChiOBJ=GRIDobj(DEM);
ChiOBJ.Z(ChiOBJ.Z==0)=NaN;
ChiOBJ.Z(IXgrid)=c;
end
function [ksn_ms]=KSN_Quick(DEM,DEMc,A,S,theta_ref,segment_length)
g=gradient(S,DEMc);
G=GRIDobj(DEM);
G.Z(S.IXgrid)=g;
Z_RES=DEMc-DEM;
ksn=G./(A.*(A.cellsize^2)).^(-theta_ref);
SD=GRIDobj(DEM);
SD.Z(S.IXgrid)=S.distance;
ksn_ms=STREAMobj2mapstruct(S,'seglength',segment_length,'attributes',...
{'ksn' ksn @mean 'uparea' (A.*(A.cellsize^2)) @mean 'gradient' G @mean 'cut_fill' Z_RES @mean...
'min_dist' SD @min 'max_dist' SD @max});
seg_dist=[ksn_ms.max_dist]-[ksn_ms.min_dist];
distcell=num2cell(seg_dist');
[ksn_ms(1:end).seg_dist]=distcell{:};
ksn_ms=rmfield(ksn_ms,{'min_dist','max_dist'});
end
function [ksn_ms]=KSN_Trunk(DEM,DEMc,A,S,theta_ref,segment_length,min_order)
order_exp=['>=' num2str(min_order)];
Smax=modify(S,'streamorder',order_exp);
Smin=modify(S,'rmnodes',Smax);
g=gradient(S,DEMc);
G=GRIDobj(DEM);
G.Z(S.IXgrid)=g;
Z_RES=DEMc-DEM;
ksn=G./(A.*(A.cellsize^2)).^(-theta_ref);
SDmax=GRIDobj(DEM);
SDmin=GRIDobj(DEM);
SDmax.Z(Smax.IXgrid)=Smax.distance;
SDmin.Z(Smin.IXgrid)=Smin.distance;
ksn_ms_min=STREAMobj2mapstruct(Smin,'seglength',segment_length,'attributes',...
{'ksn' ksn @mean 'uparea' (A.*(A.cellsize^2)) @mean 'gradient' G @mean 'cut_fill' Z_RES @mean...
'min_dist' SDmin @min 'max_dist' SDmin @max});
ksn_ms_max=STREAMobj2mapstruct(Smax,'seglength',segment_length,'attributes',...
{'ksn' ksn @mean 'uparea' (A.*(A.cellsize^2)) @mean 'gradient' G @mean 'cut_fill' Z_RES @mean...
'min_dist' SDmax @min 'max_dist' SDmax @max});
ksn_ms=vertcat(ksn_ms_min,ksn_ms_max);
seg_dist=[ksn_ms.max_dist]-[ksn_ms.min_dist];
distcell=num2cell(seg_dist');
[ksn_ms(1:end).seg_dist]=distcell{:};
ksn_ms=rmfield(ksn_ms,{'min_dist','max_dist'});
end
function [ksn_ms]=KSN_Trib(DEM,DEMc,FD,A,S,theta_ref,segment_length)
% Define non-intersecting segments
w1=waitbar(0,'Finding network segments');
[as]=networksegment_slim(DEM,FD,S);
seg_bnd_ix=as.ix;
% Precompute values or extract values needed for later
waitbar(1/4,w1,'Calculating hydrologically conditioned stream elevations');
z=getnal(S,DEMc);
zu=getnal(S,DEM);
z_res=z-zu;
waitbar(2/4,w1,'Calculating chi values');
g=gradient(S,DEMc);
c=chitransform(S,A,'a0',1,'mn',theta_ref);
d=S.distance;
da=getnal(S,A.*(A.cellsize^2));
ixgrid=S.IXgrid;
waitbar(3/4,w1,'Extracting node ordered list');
% Extract ordered list of stream indices and find breaks between streams
s_node_list=S.orderednanlist;
streams_ix=find(isnan(s_node_list));
streams_ix=vertcat(1,streams_ix);
waitbar(1,w1,'Pre computations completed');
close(w1)
% Generate empty node attribute list for ksn values
ksn_nal=zeros(size(d));
% Begin main loop through channels
num_streams=numel(streams_ix)-1;
w1=waitbar(0,'Calculating k_{sn} values - 0% Done');
seg_count=1;
for ii=1:num_streams
% Extract node list for stream of interest
if ii==1
snlOI=s_node_list(streams_ix(ii):streams_ix(ii+1)-1);
else
snlOI=s_node_list(streams_ix(ii)+1:streams_ix(ii+1)-1);
end
% Determine which segments are within this stream
[~,~,dn]=intersect(snlOI,seg_bnd_ix(:,1));
[~,~,up]=intersect(snlOI,seg_bnd_ix(:,2));
seg_ix=intersect(up,dn);
num_segs=numel(seg_ix);
dn_up=seg_bnd_ix(seg_ix,:);
for jj=1:num_segs
% Find positions within node list
dnix=find(snlOI==dn_up(jj,1));
upix=find(snlOI==dn_up(jj,2));
% Extract segment indices of desired segment
seg_ix_oi=snlOI(upix:dnix);
% Extract flow distances and normalize
dOI=d(seg_ix_oi);
dnOI=dOI-min(dOI);
num_bins=ceil(max(dnOI)/segment_length);
bin_edges=[0:segment_length:num_bins*segment_length];
% Loop through bins
for kk=1:num_bins
idx=dnOI>bin_edges(kk) & dnOI<=bin_edges(kk+1);
bin_ix=seg_ix_oi(idx);
cOI=c(bin_ix);
zOI=z(bin_ix);
if numel(cOI)>2
[ksn_val,r2]=Chi_Z_Spline(cOI,zOI);
ksn_nal(bin_ix)=ksn_val;
% Build mapstructure
ksn_ms(seg_count).Geometry='Line';
ksm_ms(seg_count).BoundingBox=[min(S.x(bin_ix)),min(S.y(bin_ix));max(S.x(bin_ix)),max(S.y(bin_ix))];
ksn_ms(seg_count).X=S.x(bin_ix);
ksn_ms(seg_count).Y=S.y(bin_ix);
ksn_ms(seg_count).ksn=ksn_val;
ksn_ms(seg_count).uparea=mean(da(bin_ix));
ksn_ms(seg_count).gradient=mean(g(bin_ix));
ksn_ms(seg_count).cut_fill=mean(z_res(bin_ix));
ksn_ms(seg_count).seg_dist=max(S.distance(bin_ix))-min(S.distance(bin_ix));
ksn_ms(seg_count).chi_r2=r2;
seg_count=seg_count+1;
end
end
end
perc_of_total=round((ii/num_streams)*1000)/10;
if rem(perc_of_total,1)==0
waitbar((ii/num_streams),w1,['Calculating k_{sn} values - ' num2str(perc_of_total) '% Done']);
end
end
close(w1);
end
function seg = networksegment_slim(DEM,FD,S)
% Slimmed down version of 'networksegment' from main TopoToolbox library that also removes zero and single node length segments
%% Identify channel heads, confluences, b-confluences and outlets
Vhead = streampoi(S,'channelheads','logical'); ihead=find(Vhead==1); IXhead=S.IXgrid(ihead);
Vconf = streampoi(S,'confluences','logical'); iconf=find(Vconf==1); IXconf=S.IXgrid(iconf);
Vout = streampoi(S,'outlets','logical'); iout=find(Vout==1); IXout=S.IXgrid(iout);
Vbconf = streampoi(S,'bconfluences','logical'); ibconf=find(Vbconf==1);IXbconf=S.IXgrid(ibconf);
%% Identify basins associated to b-confluences and outlets
DB = drainagebasins(FD,vertcat(IXbconf,IXout));DBhead=DB.Z(IXhead); DBbconf=DB.Z(IXbconf); DBconf=DB.Z(IXconf); DBout=DB.Z(IXout);
%% Compute flowdistance
D = flowdistance(FD);
%% Identify river segments
% links between channel heads and b-confluences
[~,ind11,ind12]=intersect(DBbconf,DBhead);
% links between confluences and b-confluences
[~,ind21,ind22]=intersect(DBbconf,DBconf);
% links between channel heads and outlets
[~,ind31,ind32]=intersect(DBout,DBhead);
% links between channel heads and outlets
[~,ind41,ind42]=intersect(DBout,DBconf);
% Connecting links into segments
IX(:,1) = [ IXbconf(ind11)' IXbconf(ind21)' IXout(ind31)' IXout(ind41)' ]; ix(:,1)= [ ibconf(ind11)' ibconf(ind21)' iout(ind31)' iout(ind41)' ];
IX(:,2) = [ IXhead(ind12)' IXconf(ind22)' IXhead(ind32)' IXconf(ind42)' ]; ix(:,2)= [ ihead(ind12)' iconf(ind22)' ihead(ind32)' iconf(ind42)' ];
% Compute segment flow length
flength=double(abs(D.Z(IX(:,1))-D.Z(IX(:,2))));
% Remove zero and one node length elements
idx=flength>=2*DEM.cellsize;
seg.IX=IX(idx,:);
seg.ix=ix(idx,:);
seg.flength=flength(idx);
% Number of segments
seg.n=numel(IX(:,1));
end
function [KSN,R2] = Chi_Z_Spline(c,z)
% Resample chi-elevation relationship using cubic spline interpolation
[~,minIX]=min(c);
zb=z(minIX);
chiF=c-min(c);
zabsF=z-min(z);
chiS=linspace(0,max(chiF),numel(chiF)).';
zS=spline(chiF,zabsF,chiS);
% Calculate ksn via slope
KSN= chiS\(zS); % mn not needed because a0 is fixed to 1
% Calculate R^2
z_pred=chiF.*KSN;
sstot=sum((zabsF-mean(zabsF)).^2);
ssres=sum((zabsF-z_pred).^2);
R2=1-(ssres/sstot);
end
function [KSNGrid,KSNstdGrid] = KsnAvg(DEM,ksn_ms,radius,er_type)
% Calculate radius
radiuspx = ceil(radius/DEM.cellsize);
SE = strel('disk',radiuspx,0);
% Record mask of current NaNs
MASK=isnan(DEM.Z);
disp('Populating channels'); ts=tic;
% Make grid with values along channels
KSNGrid=GRIDobj(DEM);
KSNGrid.Z(:,:)=NaN;