Skip to content

A repository for the NYUSH graduate seminar based on Brady Neal's Causal Inference Course.

License

Notifications You must be signed in to change notification settings

jerlich/nyush-cic

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 

Repository files navigation

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>
 <head>
  <title>Index of /teaching/CausalInf2021</title>
 </head>
 <body>
<h1>Index of /teaching/CausalInf2021</h1>
<pre><img src="/icons/blank.gif" alt="Icon "> <a href="?C=N;O=D">Name</a>                                                    <a href="?C=M;O=A">Last modified</a>      <a href="?C=S;O=A">Size</a>  <a href="?C=D;O=A">Description</a><hr><img src="/icons/back.gif" alt="[PARENTDIR]"> <a href="/teaching/">Parent Directory</a>                                                             -   
<img src="/icons/layout.gif" alt="[   ]"> <a href="10%20-%20Causal%20Discovery%20from%20Observational%20Data.pdf">10 - Causal Discovery from Observational Data.pdf</a>       2021-02-02 12:36  3.5M  
<img src="/icons/layout.gif" alt="[   ]"> <a href="11%20-%20Causal%20Discovery%20from%20Interventions.pdf">11 - Causal Discovery from Interventions.pdf</a>            2021-02-02 12:36  2.9M  
<img src="/icons/layout.gif" alt="[   ]"> <a href="12%20-%20Transfer%20Learning%20and%20Transportability.pdf">12 - Transfer Learning and Transportability.pdf</a>         2021-02-02 12:36  3.2M  
<img src="/icons/layout.gif" alt="[   ]"> <a href="14%20-%20Counterfactuals%20and%20Mediation.pdf">14 - Counterfactuals and Mediation.pdf</a>                  2021-02-02 12:36  3.1M  
<img src="/icons/layout.gif" alt="[   ]"> <a href="2%20-%20Potential%20Outcomes.pdf">2 - Potential Outcomes.pdf</a>                              2021-02-02 12:36  5.9M  
<img src="/icons/layout.gif" alt="[   ]"> <a href="3%20-%20The%20Flow%20of%20Association%20and%20Causation%20in%20Graphs.pdf">3 - The Flow of Association and Causation in Graphs.pdf</a> 2021-02-02 12:36  3.8M  
<img src="/icons/layout.gif" alt="[   ]"> <a href="4%20-%20Causal%20Models.pdf">4 - Causal Models.pdf</a>                                   2021-02-02 12:36  5.8M  
<img src="/icons/layout.gif" alt="[   ]"> <a href="5%20-%20Identification.pdf">5 - Identification.pdf</a>                                  2021-02-02 12:36  4.3M  
<img src="/icons/layout.gif" alt="[   ]"> <a href="6%20-%20Estimation.pdf">6 - Estimation.pdf</a>                                      2021-02-02 12:36  4.0M  
<img src="/icons/layout.gif" alt="[   ]"> <a href="7%20-%20Unobserved%20Confounding.pdf">7 - Unobserved Confounding.pdf</a>                          2021-02-02 12:36  7.5M  
<img src="/icons/layout.gif" alt="[   ]"> <a href="8%20-%20Instrumental%20Variables.pdf">8 - Instrumental Variables.pdf</a>                          2021-02-02 12:36  3.4M  
<img src="/icons/layout.gif" alt="[   ]"> <a href="9%20-%20Difference-in-Differences.pdf">9 - Difference-in-Differences.pdf</a>                       2021-02-02 12:36  3.1M  
<img src="/icons/unknown.gif" alt="[   ]"> <a href="CausalCourse%20Syllabus.docx">CausalCourse Syllabus.docx</a>                              2021-01-08 14:51  8.4K  
<img src="/icons/unknown.gif" alt="[   ]"> <a href="CausalityLecture-30nov2020.pptx">CausalityLecture-30nov2020.pptx</a>                         2021-01-22 14:26   36M  
<img src="/icons/layout.gif" alt="[   ]"> <a href="Introduction_to_Causal_Inference-Dec17_2020-Neal.pdf">Introduction_to_Causal_Inference-Dec17_2020-Neal.pdf</a>    2021-01-22 14:16  1.0M  
<img src="/icons/text.gif" alt="[TXT]"> <a href="presentations.jl.html">presentations.jl.html</a>                                   2021-02-02 13:04   19K  
<img src="/icons/layout.gif" alt="[   ]"> <a href="probability_cheatsheet.pdf">probability_cheatsheet.pdf</a>                              2021-01-26 12:44  789K  
<hr></pre>
<!DOCTYPE html>
<html lang="en">
<!-- Beautiful Jekyll | MIT license | Copyright Dean Attali 2016 -->

<head>
    <meta charset="utf-8" />
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, viewport-fit=cover">

    <title>Introduction to Causal Inference</title>

    <meta name="author" content="Brady Neal" />

    <meta name="description"
        content="Introduction to Causal Inference. A free online course on causal inference from a machine learning perspective.">

    <link rel="alternate" type="application/rss+xml"
        title="Brady Neal - Causality Blog - Brady Neal's personal website and blog about causal inference and machine learning."
        href="https://www.bradyneal.com/feed.xml" />






    <link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/font-awesome/4.6.0/css/font-awesome.min.css" />
    <style>
        table {
            border-collapse: collapse;
        }
    </style>
    <!-- 

<link rel="stylesheet" href="/css/bootstrap.min.css" />
<link rel="stylesheet" href="/css/bootstrap-social.css" />
<link rel="stylesheet" href="/css/main.css" /> -->

    <link rel="stylesheet" href="//fonts.googleapis.com/css?family=Lora:400,700,400italic,700italic" />
    <link rel="stylesheet"
        href="//fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800" />




    <!-- Facebook OpenGraph tags -->

    <meta property="og:title" content="Introduction to Causal Inference" />

    <meta property="og:description"
        content="Introduction to Causal Inference. A free online course on causal inference from a machine learning perspective.">


    <meta property="og:type" content="website" />

    <meta property="og:url" content="https://www.bradyneal.com/causal-inference-course" />
    <link rel="canonical" href="https://www.bradyneal.com/causal-inference-course" />

    <meta property="og:image" content="https://www.bradyneal.com/img/favicon1250.png" />
    <meta property="og:image:width" content="1200" />
    <meta property="og:image:height" content="630" />


    <!-- Twitter summary cards -->
    <meta name="twitter:card" content="summary" />
    <meta name="twitter:site" content="@" />
    <meta name="twitter:creator" content="@" />

    <meta name="twitter:title" content="Introduction to Causal Inference" />

    <meta name="twitter:description"
        content="Introduction to Causal Inference. A free online course on causal inference from a machine learning perspective.">

    <meta name="twitter:image" content="https://www.bradyneal.com/img/favicon1250.png" />
    <meta name="twitter:card" content="summary_large_image">




    <!-- Citation tags -->

    <!-- KaTeX (The fastest math typesetting library for the web) -->
    <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css"
        integrity="sha384-zB1R0rpPzHqg7Kpt0Aljp8JPLqbXI3bhnPWROx27a9N0Ll6ZP/+DiW/UqRcLbRjq" crossorigin="anonymous">
    <!-- Commented below KaTeX js files that are only necessary for client-side in-browser rendering -->
    <!-- <script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js" integrity="sha384-y23I5Q6l+B6vatafAwxRu/0oK/79VlbSz7Q9aiSZUvyWYIYsd+qj+o24G5ZU2zJz" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js" integrity="sha384-kWPLUVMOks5AQFrykwIup5lo0m3iMkkHrD0uJ4H5cjeGihAutqP0yW0J6dpFiVkI" crossorigin="anonymous" onload="renderMathInElement(document.body);"></script> -->

</head>

<link rel="shortcut icon" href="/favicon.ico" type="image/x-icon" />
<link rel="apple-touch-icon" href="/apple-touch-icon.png" />
<link rel="apple-touch-icon" sizes="57x57" href="/apple-touch-icon-57x57.png" />
<link rel="apple-touch-icon" sizes="72x72" href="/apple-touch-icon-72x72.png" />
<link rel="apple-touch-icon" sizes="76x76" href="/apple-touch-icon-76x76.png" />
<link rel="apple-touch-icon" sizes="114x114" href="/apple-touch-icon-114x114.png" />
<link rel="apple-touch-icon" sizes="120x120" href="/apple-touch-icon-120x120.png" />
<link rel="apple-touch-icon" sizes="144x144" href="/apple-touch-icon-144x144.png" />
<link rel="apple-touch-icon" sizes="152x152" href="/apple-touch-icon-152x152.png" />
<link rel="apple-touch-icon" sizes="180x180" href="/apple-touch-icon-180x180.png" />


<body data-spy="scroll" data-target=".toc-nav" data-offset="150">


    <!--
<nav class="navbar navbar-default navbar-fixed-top navbar-custom">
<div class="container-fluid">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#main-navbar">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="https://www.bradyneal.com/">Brady Neal</a>
Change the website title in the upper-left corner to link to the About Me page, rather than the index/blog page
<a class="navbar-brand" href="https://www.bradyneal.com/aboutme">Brady Neal</a></div>

 <div class="collapse navbar-collapse" id="main-navbar">
<ul class="nav navbar-nav navbar-right">
<li><a href="/causal-inference-course">Course</a></li>
<li><a href="/">Blog</a></li>
<li><a href="/aboutme">About Me</a></li>
<li><a href="https://scholar.google.ca/citations?user=cEpJgXYAAAAJ">Papers</a></li></ul>
</div> -->


    </div>
    </nav>


    <!-- TODO this file has become a mess, refactor it -->





    <header class="header-section ">

        <div class="intro-header no-img">
            <div class="container">
                <div class="row">
                    <div class="col-lg-8 col-lg-offset-2 col-md-10 col-md-offset-1">
                        <div class="page-heading">
                            <h1 style="font-size:40px">Introduction to Causal Inference</h1>
                            <hr class="small">
                            <span class="page-subheading" style="font-size:20px">Spring 2021</span>
                        </div>
                    </div>
                </div>
            </div>
        </div>
    </header>




    <div class="container" role="main">
        <div class="row">
            <div class="col-lg-12 col-md-12">
                <!-- <div class="col-lg-10 col-lg-offset-1 col-md-10 col-md-offset-1"> -->
                <!-- <div class="col-lg-10 col-lg-offset-1 col-md-10 col-md-offset-1"> -->
                <p>This is the NYUSH causal inference course page. This webpage was more-or-less copied from <a
                        href="https://bradyneal.com">Brady Neal's Site</a>.
                    Although, the course text is written from a machine learning perspective, this course is meant to be
                    for anyone with the necessary <a href="#prerequisites">prerequisites</a> who is interested in
                    learning the basics of causality.
                    The class attempts to integrate insights from <a
                        href="https://www.bradyneal.com/which-causal-inference-book">many different fields</a> that
                    utilize causal inference such as epidemiology, economics, political science, machine learning, etc.
                    You can see the <a href="#course-schedule-tentative">tentative course schedule</a> below.</p>

                <p>You can join the <a
                        href="https://chat.erlichlab.org/signup_user_complete/?id=d8phzf5nfib99j7f7ahti656gh">course
                        mattermost</a> where you can easily start discussions with other people who are interested in
                    causal inference. Email Profs. Erlich or Weslake to meet outside of class hours.
                    The main <a href="#course-textbook">textbook</a> we'll use for this course is <em>Introduction to
                        Causal Inference</em> (ICI), which is a book draft that I'll continually update throughout this
                    course.</p>

                <h2 id="course-schedule-tentative">Course Schedule</h2>

                <p><strong>Note about slides:</strong> they currently don't work well with Adobe Acrobat, though they
                    seem to work with other PDF viewers.</p>

                <p><strong>Note about videos:</strong> The <a
                        html="https://www.youtube.com/playlist?list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0">videos for each
                        week</a> are broken up into several short videos. You must watch ALL of the videos for each week
                    as part of class preparation. </p>


                <style>
                    th,
                    td {
                        max-width: 350px;
                    }
                </style>

                <table border>
                    <thead>
                        <tr>
                            <th>Week</th>
                            <th>Date</th>
                            <th>Topics</th>
                            <th>Lecture</th>
                            <th>Readings</th>
                            <th>Reading Group Paper</th>
                        </tr>
                    </thead>
                    <tbody>
                        <tr>
                            <td>1</td>
                            <td>Jan 26</td>
                            <td>Motivation<br />Course Preview<br />Course Information</td>
                            <td><a href="https://www.youtube.com/watch?v=CfzO4IEMVUk&amp;list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&amp;index=1"
                                    target="_blank" rel="noopener noreferrer">Video</a><br />
                                <a href="/slides/1%20-%20A%20Brief%20Introduction%20to%20Causal%20Inference.pdf"
                                    download="">Slides</a><br />
                                <a href="https://www.youtube.com/watch?v=xj-tzrm5Src&amp;list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&amp;index=6"
                                    target="_blank" rel="noopener noreferrer">Info</a>
                            </td>
                            <td>Chapter 1 of ICI</td>
                            <td>None</td>
                        </tr>
                        <tr>
                            <td>2</td>
                            <td>Feb 2</td>
                            <td>Potential Outcomes<br />A Complete Example with Estimation</td>
                            <td><a href="https://www.youtube.com/watch?v=q8x9aetyok0&amp;list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&amp;index=8"
                                    target="_blank" rel="noopener noreferrer">Video</a><br />
                                <a href="/slides/2%20-%20Potential%20Outcomes.pdf" download="">Slides</a>
                            </td>
                            <td>Chapter 2 of ICI</td>
                            <td><a href="https://www.nature.com/articles/ijo200882" target="_blank"
                                    rel="noopener noreferrer">Does obesity shorten life? The importance of well-defined
                                    interventions to answer causal questions (Hernán &amp; Taubman, 2008)</a></td>
                        </tr>
                        <tr>
                            <td>3</td>
                            <td>Feb 9</td>
                            <td>Graphical Models<br /></td>
                            <td><a href="https://www.youtube.com/watch?v=Go4EkHN_PcA&amp;list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&amp;index=19"
                                    target="_blank" rel="noopener noreferrer">Video</a><br />
                                <a href="/slides/3%20-%20The%20Flow%20of%20Association%20and%20Causation%20in%20Graphs.pdf"
                                    download="">Slides</a>
                            </td>
                            <td>Chapter 3 of ICI</td>
                            <td><a href="https://ftp.cs.ucla.edu/pub/stat_ser/r483-reprint.pdf" target="_blank"
                                    rel="noopener noreferrer">Does Obesity Shorten Life? Or is it the Soda? On
                                    Non-manipulable Causes (Pearl, 2018)</a></td>
                        </tr>
                        <tr>
                            <td>4</td> <td> Feb 23</td>
                            <td>Backdoor Adjustment<br />Structural Causal Models</td>
                            <td><a href="https://www.youtube.com/watch?v=dB8r4Afmobo&amp;list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&amp;index=28"
                                    target="_blank" rel="noopener noreferrer">Video</a><br />
                                <a href="/slides/4%20-%20Causal%20Models.pdf" download="">Slides</a>
                            </td>
                            <td>Chapter 4 of ICI</td>
                            <td><a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.644.1881&amp;rep=rep1&amp;type=pdf"
                                    target="_blank" rel="noopener noreferrer">Single World Intervention Graphs: A Primer
                                    (Richardson &amp; Robins, 2013)</a></td>
                        </tr>
                        <tr>
                            <td>5</td><td> Mar 2</td>
                            <td>Randomized Experiments<br />Frontdoor
                                Adjustment<br /><i>do</i>-calculus<br />Graph-Based Identification</td>
                            <td><a href="https://www.youtube.com/watch?v=z91LnTDyhtI&amp;list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&amp;index=37"
                                    target="_blank" rel="noopener noreferrer">Video</a><br />
                                <a href="/slides/5%20-%20Identification.pdf" download="">Slides</a>
                            </td>
                            <td>Chapters 5-6 of ICI</td>
                            <td><a href="https://causalai.net/r60.pdf" target="_blank" rel="noopener noreferrer">On
                                    Pearl's Hierarchy and the Foundations of Causal Inference (Bareinboim et al.,
                                    2020)</a></td>
                        </tr>
                        <tr><td>6</td>
                            <td>Mar 9</td>
                            <td>Estimation<br /><a href="https://athey.people.stanford.edu" target="_blank"
                                    rel="noopener noreferrer">Susan Athey</a><br />Estimating Heterogeneous
                                Treatment Effects<br /></td>
                            <td><a href="https://www.youtube.com/watch?v=YzcOYU-s2t4&amp;list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&amp;index=42"
                                    target="_blank" rel="noopener noreferrer">Video</a><br />
                                <a href="/slides/6%20-%20Estimation.pdf" download="">Slides</a><br />
                                <a href="https://www.youtube.com/watch?v=oZoizsX3bts&amp;list=PLoazKTcS0RzZ1SUgeOgc6SWt51gfT80N0&amp;index=7"
                                    target="_blank" rel="noopener noreferrer">Guest Talk</a>
                            </td>
                            <td>Chapter 7 of ICI</td>
                            <td><a href="https://arxiv.org/abs/1906.02120" target="_blank"
                                    rel="noopener noreferrer">Adapting Neural Networks for the Estimation of Treatment
                                    Effects (Shi, Blei, Veitch, 2019)</a></td>
                        </tr>
                        <tr><td>7</td>
                            <td>Mar 16</td>
                            <td>Unobserved Confounding,<br />Bounds, and<br />Sensitivity Analysis</td>
                            <td><a href="https://www.youtube.com/watch?v=IXNMYqUsBBQ&amp;list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&amp;index=47"
                                    target="_blank" rel="noopener noreferrer">Video</a><br />
                                <a href="/slides/7%20-%20Unobserved%20Confounding.pdf" download="">Slides</a>
                            </td>
                            <td>Chapter 8 of ICI</td>
                            <td><a href="https://arxiv.org/abs/2003.01747" target="_blank"
                                    rel="noopener noreferrer">Sense and Sensitivity Analysis: Simple Post-Hoc Analysis
                                    of Bias Due to Unobserved Confounding (Veitch &amp; Zaveri, 2020)</a></td>
                        </tr>
                        <tr><td>8</td>
                            <td>Mar 23</td>
                            <td>Instrumental Variables</td>
                            <td><a href="https://www.youtube.com/watch?v=Mco16tUSA-U&amp;list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&amp;index=53"
                                    target="_blank" rel="noopener noreferrer">Video</a><br />
                                <a href="/slides/8%20-%20Instrumental%20Variables.pdf" download="">Slides</a>
                            </td>
                            <td>Chapter 9 of ICI</td>
                            <td><a href="http://proceedings.mlr.press/v70/hartford17a.html" target="_blank"
                                    rel="noopener noreferrer">Deep IV: A Flexible Approach for Counterfactual Prediction
                                    (Hartford et al., 2017)</a></td>
                        </tr>
                        <tr><td>9</td>
                            <td>Mar 30</td>
                            <td>Difference-in-Differences<br /><a href="http://economics.mit.edu/faculty/abadie"
                                    target="_blank" rel="noopener noreferrer">Alberto Abadie</a><br />Synthetic Control</td>
                            <td><a href="https://www.youtube.com/watch?v=tT8xLRS_cRQ&amp;list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&amp;index=58"
                                    target="_blank" rel="noopener noreferrer">Video</a><br />
                                <a href="/slides/9%20-%20Difference-in-Differences.pdf" download="">Slides</a><br />
                                <a href="https://www.youtube.com/watch?v=nKzNp-qpE-I&amp;list=PLoazKTcS0RzZ1SUgeOgc6SWt51gfT80N0&amp;index=11"
                                    target="_blank" rel="noopener noreferrer">Guest Talk</a>
                            </td>
                            <td>Chapter 10 of ICI</td>
                            <td><a href="https://www.princeton.edu/~davidlee/wp/RDDEconomics.pdf" target="_blank"
                                    rel="noopener noreferrer">Regression Discontinuity Designs in Economics (Lee &amp;
                                    Lemieux, 2010)</a></td>
                        </tr>
                        <tr><td>10</td>
                            <td>Apr 6</td>
                            <td>Causal Discovery from Observational Data<br /><a href="http://web.math.ku.dk/~peters/"
                                    target="_blank" rel="noopener noreferrer">Jonas Peters</a></td>
                            <td><a href="https://www.youtube.com/watch?v=lVE-4deFe7c&amp;list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&amp;index=62"
                                    target="_blank" rel="noopener noreferrer">Video</a><br />
                                <a href="/slides/10%20-%20Causal%20Discovery%20from%20Observational%20Data.pdf"
                                    download="">Slides</a><br />
                            </td>
                            <td>Chapter 11 of ICI</td>
                            <td><a href="https://www.nature.com/articles/s41467-019-10105-3" target="_blank"
                                    rel="noopener noreferrer">Inferring causation from time series in Earth system
                                    sciences (Runge et al., 2019)</a></td>
                        </tr>
                        <tr><td>11</td>
                            <td>Apr 13</td>
                            <td>Causal Discovery from Interventions</td>
                            <td><a href="https://www.youtube.com/watch?v=de2ODel8F1k&amp;list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&amp;index=69"
                                    target="_blank" rel="noopener noreferrer">Video</a><br />
                                <a href="/slides/11%20-%20Causal%20Discovery%20from%20Interventions.pdf"
                                    download="">Slides</a><br />
                            </td>
                            <td>Chapter 12 of ICI<br />(Coming Soon?)</td>
                            <td><a href="https://arxiv.org/abs/1705.10220" target="_blank"
                                    rel="noopener noreferrer">Permutation-based Causal Inference Algorithms with
                                    Interventions (Wang et al., 2017)</a></td>
                        </tr>
                        <tr><td>12</td>
                            <td>Apr 20 </td>
                            <td>Transfer Learning<br />Transportability</td>
                            <td><a href="https://www.youtube.com/watch?v=JNq4oCV9C5k&amp;list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&amp;index=77"
                                    target="_blank" rel="noopener noreferrer">Video</a><br />
                                <a href="/slides/12%20-%20Transfer%20Learning%20and%20Transportability.pdf"
                                    download="">Slides</a><br />
                            </td>
                            <td>Chapter 13 of ICI<br />(Coming Soon?)</td>
                            <td><a href="https://arxiv.org/abs/2006.07433" target="_blank" rel="noopener noreferrer">A
                                    causal framework for distribution generalization (Christiansen et al., 2020)</a>
                            </td>
                        </tr>
                        <tr><td>13</td>
                            <td>Apr 27</td>
                            <td><a href="https://yoshuabengio.org/profile/" target="_blank"
                                    rel="noopener noreferrer">Yoshua Bengio</a> <br />Causal Representation
                                Learning</td>
                            <td><a href="https://www.youtube.com/watch?v=rKZJ0TJWvTk&amp;list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&amp;index=80"
                                    target="_blank" rel="noopener noreferrer"></a><br />
                                <a href="/slides/Yoshua_Bengio_Guest_Talk_Towards_Causal_Representation_Learning.pdf"
                                    download="">Slides</a><br />
                            </td>
                            <td>None</td>
                            <td><a href="https://arxiv.org/abs/1907.02893" target="_blank"
                                    rel="noopener noreferrer">Invariant Risk Minimization (Arjovsky et al., 2019)</a>
                            </td>
                        </tr>
                        <tr><td>14</td>
                            <td>May 4</td>
                            <td>Counterfactuals<br />Mediation</td>
                            <td><a href="https://www.youtube.com/watch?v=f8PEpthLlN4&amp;list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&amp;index=81"
                                    target="_blank" rel="noopener noreferrer">Video</a><br />
                                <a href="/slides/14%20-%20Counterfactuals%20and%20Mediation.pdf"
                                    download="">Slides</a><br />
                            </td>
                            <td>Chapter 14 of ICI<br>Coming Soon? </td>
                            <td><a href="https://ftp.cs.ucla.edu/pub/stat_ser/r321-ijcai05.pdf" target="_blank"
                                    rel="noopener noreferrer">Identifiability of Path-Specific Effects (Avin, Shpitser,
                                    &amp; Pearl, 2005)</a></td>
                        </tr>
                    </tbody>
                </table>

               

                <h2 id="course-textbook">Course Textbook</h2>

                <p>Draft of first 10 chapters (continually updated with new chapters throughout the course):</p>

                <div style="text-align: center;">
                    <a href="Introduction_to_Causal_Inference-Dec17_2020-Neal.pdf">
                        <span style="font-size: 24px;">Introduction to Causal Inference (ICI)</span><br />
                        <span style="font-size: 18px;">from a Machine Learning Perspective</span>
                    </a>
                </div>

                <p>This is a book <em>draft</em>, so I greatly appreciate any feedback you're willing to send my way.
                    If you're unsure whether I'll be receptive to it or not, don't be.
                    Please send any feedback to me using the “Book� option of the <a
                        href="https://docs.google.com/forms/d/e/1FAIpQLSfoDk_PftCTD5aSqz7TP_MG8heIw0wSH4OVEkIsSvCaLgSsXw/viewform?usp=sf_link">feedback
                        form</a>.
                    Feedback can be at the word level, sentence level, section level, chapter level, etc.
                    Here's a non-exhaustive list of useful kinds of feedback:</p>

                <ul>
                    <li>Typoz.</li>
                    <li>Some part is confusing.</li>
                    <li>You notice your mind start to wonder or don't feel motivated to read some part.</li>
                    <li>Some part seems like it can be cut.</li>
                    <li>You feel strongly that some part absolutely should not be cut.</li>
                    <li>Some parts are not connected well.</li>
                    <li>When moving from one part to the next, you notice that there isn't a natural flow.</li>
                    <li>A new active reading exercise you thought of.</li>
                </ul>

                <h2 id="prerequisites">Prerequisites</h2>

                <p><strong>There is one main prerequisite: basic probability.</strong> This course assumes you've taken
                    an introduction to probability course at the undergraduate level or have had equivalent experience.
                    Topics from statistics and machine learning will pop up in the course from time to time, so some
                    familiarity with those will be helpful, but is not necessary.
                    For example, if cross-validation is a new concept to you, you can learn it relatively quickly at the
                    point in the course that it pops up.
                    And in Section 2.4 of the book, we give a primer on some statistics terminology that we'll use.</p>

                <h2 id="faqs">FAQs</h2>

                <p>Q: Where should I ask questions about a given lecture?<br />
                    A: Use the YouTube comment selection below the relevant video. I check it once per day on week days.
                </p>

                <p>Q: Is this course for credit?<br />
                    A: No.</p>

                <p>Q: Is this course free?<br />
                    A: Yes!</p>

                <p>Q: What time is the course?<br />
                    A: Only the guest talks will have specific times (listed in the schedule). The regular lecture
                    videos won't be live and will usually be uploaded to YouTube on Mondays.</p>

                <p>Q: I'm not receiving course emails.<br />
                    A: Email me with “[Causal Course]� at the beginning of your email subject, and I'll fix it.</p>

                <h2 id="feedback">Feedback</h2>

                <p>If you have any feedback about the course to send my way, I welcome it!
                    Please send it <a
                        href="https://docs.google.com/forms/d/e/1FAIpQLSfoDk_PftCTD5aSqz7TP_MG8heIw0wSH4OVEkIsSvCaLgSsXw/viewform?usp=sf_link">here</a>.
                    You can include your name or not include your name.
                    Either works.</p>

                <h2 id="potential-reading-group-papers-by-week">Potential Reading Group Papers by Week</h2>

                <p>We will have a small weekly reading group that runs in parallel to the course.
                    Before any given week's reading group meeting, 1-3 people will have read the week's paper in detail
                    and already thought about discussion topics.
                    These 1-3 people will then lead a discussion of a small number of people who have all made
                    themselves familiar with the paper.
                    The discussion group will be kept small (at most 15) in order to facilitate quality discussion.
                    You can ensure that you have a place in the discussion group every week you'd like by signing up to
                    be a discussion leader for at least one week.
                    Below, I give a list of potential reading group papers, organized by week/topic, just like the
                    course schedule is.
                    You can email me at [email protected] to let me know that you'd like to lead a certain week's
                    discussion, which paper(s) you're considering, or to discuss other papers you'd like to discuss that
                    are not on the list.</p>

                <ol>
                    <li>Motivation and Preview - No reading group</li>
                    <li>Potential Outcomes
                        <ul>
                            <li><a href="https://www.nature.com/articles/ijo200882">Does obesity shorten life? The
                                    importance of well-defined interventions to answer causal questions (Hernán &amp;
                                    Taubman, 2008)</a></li>
                            <li><a href="https://ftp.cs.ucla.edu/pub/stat_ser/r483-reprint.pdf">Does Obesity Shorten
                                    Life? Or is it the Soda? On Non-manipulable Causes (Pearl, 2018)</a></li>
                        </ul>
                    </li>
                    <li>Graphical Models and SCMs
                        <ul>
                            <li><a
                                    href="https://www.degruyter.com/view/j/jci.2019.7.issue-1/jci-2019-2002/jci-2019-2002.xml">On
                                    the Interpretation of do(x) (Pearl, 2019)</a></li>
                            <li><a href="https://arxiv.org/abs/1203.6502">Quantifying causal influences (Janzing et al.,
                                    2012)</a></li>
                            <li><a href="https://ftp.cs.ucla.edu/pub/stat_ser/r391.pdf">Trygve Haavelmo and the
                                    Emergence of Causal Calculus (Pearl, 2014)</a></li>
                        </ul>
                    </li>
                    <li>Randomized Experiments, Frontdoor Adjustment, and <em>do</em>-calculus
                        <ul>
                            <li><a
                                    href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.644.1881&amp;rep=rep1&amp;type=pdf">Single
                                    World Intervention Graphs: A Primer (Richardson &amp; Robins, 2013)</a></li>
                        </ul>
                        <ul>
                            <li><a
                                    href="http://marcfbellemare.com/wordpress/wp-content/uploads/2019/08/BellemareBloemFDCAugust2019.pdf">The
                                    Paper of How: Estimating Treatment Effects Using the Front-Door Criterion (Bellemare
                                    &amp; Bloem, 2019)</a></li>
                            <li><a href="https://causalai.net/r60.pdf">On Pearl's Hierarchy and the Foundations of
                                    Causal Inference (Bareinboim et al., 2020)</a></li>
                        </ul>
                    </li>
                    <li>Estimation and Conditional Average Treatment Effects
                        <ul>
                            <li><a href="https://arxiv.org/abs/1606.03976">Estimating individual treatment effect:
                                    generalization bounds and algorithms (Shalit, Johansson, &amp; Sontag, 2017)</a>
                            </li>
                            <li><a href="https://arxiv.org/abs/1906.02120">Adapting Neural Networks for the Estimation
                                    of Treatment Effects (Shi, Blei, Veitch, 2019)</a></li>
                            <li><a href="https://arxiv.org/abs/1610.01271">Generalized Random Forests (Athey,
                                    Tibshirani, Wager, 2019)</a></li>
                            <li><a href="https://arxiv.org/abs/1706.03461">Meta-learners for Estimating Heterogeneous
                                    Treatment Effects using Machine Learning (Künzel et al., 2017)</a> (caution: not
                                about meta-learning in the ML sense)</li>
                        </ul>
                    </li>
                    <li>Sensitivity Analysis
                        <ul>
                            <li><a href="https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssb.12348">Making sense
                                    of sensitivity: extending omitted variable bias (Cinelli &amp; Hazlett, 2019)</a>
                            </li>
                            <li><a href="https://arxiv.org/abs/2003.01747">Sense and Sensitivity Analysis: Simple
                                    Post-Hoc Analysis of Bias Due to Unobserved Confounding (Veitch &amp; Zaveri,
                                    2020)</a></li>
                            <li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800481/">An Introduction to
                                    Sensitivity Analysis for Unobserved Confounding in Non-Experimental Prevention
                                    Research (Liu, Kuramoto, &amp; Stuart, 2013)</a></li>
                            <li><a href="http://proceedings.mlr.press/v97/cinelli19a.html">Sensitivity Analysis of
                                    Linear Structural Causal Models (Cinelli et al., 2019)</a></li>
                        </ul>
                    </li>
                    <li>Instrumental Variables, Regression Discontinuity, Difference-in-Differences, and Synthetic
                        Control
                        <ul>
                            <li><a
                                    href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.883.6034&amp;rep=rep1&amp;type=pdf">Improving
                                    Causal Inference: Strengths and Limitations of Natural Experiments (Dunning,
                                    2007)</a></li>
                            <li><a href="http://paa2019.populationassociation.org/uploads/190202">Alternative Causal
                                    Inference Methods in Population Health Research: Evaluating Tradeoffs and
                                    Triangulating Evidence (Mattay et al., 2019)</a></li>
                            <li><a href="http://proceedings.mlr.press/v70/hartford17a/hartford17a.pdf">Deep IV: A
                                    Flexible Approach for Counterfactual Prediction (Hartford et al., 2017)</a></li>
                            <li><a href="https://www.princeton.edu/~davidlee/wp/RDDEconomics.pdf">Regression
                                    Discontinuity Designs in Economics (Lee &amp; Lemieux, 2010)</a></li>
                            <li>Synthetic Controls (there are several different Abadie papers; message me, if you're
                                interested in this topic)</li>
                        </ul>
                    </li>
                    <li>Causal Discovery without Experiments
                        <ul>
                            <li><a href="https://www.nature.com/articles/s41467-019-10105-3">Inferring causation from
                                    time series in Earth system sciences (Runge et al., 2019)</a></li>
                            <li><a href="https://jmlr.org/papers/v17/14-518.html">Distinguishing Cause from Effect Using
                                    Observational Data: Methods and Benchmarks (Mooij et al., 2016)</a></li>
                        </ul>
                        <ul>
                            <li><a
                                    href="https://www.cs.helsinki.fi/u/mjarvisa/papers/hyttinen-eberhardt-jarvisalo.uai15.pdf">Do-calculus
                                    when the True Graph Is Unknown (Hyttinen, Eberhardt, Jarvisalo, 2015)</a></li>
                            <li><a href="https://www.frontiersin.org/articles/10.3389/fgene.2019.00524/full">Review of
                                    Causal Discovery Methods Based on Graphical Models (Glymour, Zhang, &amp; Spirtes,
                                    2019)</a></li>
                            <li><a href="https://rss.onlinelibrary.wiley.com/doi/10.1111/rssb.12167">Causal inference by
                                    using invariant prediction: identification and confidence intervals (Peters,
                                    Bühlmann &amp; Meinshausen, 2016)</a></li>
                            <li><a
                                    href="https://papers.nips.cc/paper/3548-nonlinear-causal-discovery-with-additive-noise-models.pdf">Nonlinear
                                    causal discovery with additive noise models (Hoyer et al., 2008)</a></li>
                            <li><a href="https://arxiv.org/abs/1903.01672">Causal Discovery from
                                    Heterogeneous/Nonstationary Data with Independent Changes (Huang et al., 2020)</a>
                            </li>
                        </ul>
                    </li>
                    <li>Causal Discovery with Experiments
                        <ul>
                            <li><a href="https://jmlr.csail.mit.edu/papers/v14/hyttinen13a.html">Experiment Selection
                                    for Causal Discovery (Hyttinen, Eberhardt, Hoyer, 2013)</a></li>
                            <li><a href="https://arxiv.org/abs/1104.2808">Characterization and Greedy Learning of
                                    Interventional Markov Equivalence Classes of Directed Acyclic Graphs (Hauser &amp;
                                    Bühlmann, 2012)</a></li>
                            <li><a href="https://arxiv.org/abs/1802.06310">Characterizing and Learning Equivalence
                                    Classes of Causal DAGs under Interventions (Yang, Katcoff, &amp; Uhler, 2018)</a>
                            </li>
                            <li><a href="https://www.jmlr.org/papers/volume21/17-123/17-123.pdf">Joint Causal Inference
                                    from Multiple Contexts (Mooij, Magliacane, &amp; Claassen, 2020)</a></li>
                        </ul>
                    </li>
                    <li>Transportability and Transfer Learning
                        <ul>
                            <li><a href="https://ftp.cs.ucla.edu/pub/stat_ser/r400-reprint.pdf">External Validity: From
                                    Do-Calculus to Transportability Across Populations (Pearl &amp; Bareinboim,
                                    2014)</a></li>
                            <li><a href="https://arxiv.org/abs/2006.07433">A causal framework for distribution
                                    generalization (Christiansen et al., 2020)</a></li>
                            <li><a href="https://www.pnas.org/content/113/27/7345">Causal inference and the data-fusion
                                    problem (Bareinboim &amp; Pearl, 2016)</a></li>
                            <li><a href="https://icml.cc/2012/papers/625.pdf">On Causal and Anticausal Learning
                                    (Schölkopf et al., 2012)</a></li>
                            <li><a href="http://proceedings.mlr.press/v28/zhang13d.html">Domain Adaptation under Target
                                    and Conditional Shift (Zhang et al., 2013)</a></li>
                            <li><a href="https://mingming-gong.github.io/papers/AAAI_MULTI.pdf">Multi-Source Domain
                                    Adaptation: A Causal View (Zhang, Gong, &amp; Schölkopf., 2015)</a></li>
                            <li><a href="http://www.jmlr.org/papers/volume19/16-432/16-432.pdf">Invariant Models for
                                    Causal Transfer Learning (Rojas-Carulla et al., 2016)</a></li>
                            <li><a href="https://arxiv.org/abs/2002.03278">Domain Adaptation As a Problem of Inference
                                    on Graphical Models (Zhang et al., 2020)</a></li>
                            <li><a href="https://arxiv.org/abs/1707.06422">Domain Adaptation by Using Causal Inference
                                    to Predict Invariant Conditional Distributions (Magliacane et al., 2018)</a></li>
                        </ul>
                    </li>
                    <li>Counterfactuals, Mediation, and Path-Specific Effects
                        <ul>
                            <li><a href="https://imai.fas.harvard.edu/research/files/mediation.pdf">Identification,
                                    Inference and Sensitivity Analysis for Causal Mediation Effects (Imai, Keele, &amp;
                                    Yamamoto, 2010)</a></li>
                            <li><a href="https://ftp.cs.ucla.edu/pub/stat_ser/r321-ijcai05.pdf">Identifiability of
                                    Path-Specific Effects (Avin, Shpitser, &amp; Pearl, 2005)</a></li>
                            <li><a href="https://ftp.cs.ucla.edu/pub/stat_ser/r389.pdf">Interpretation and
                                    Identification of Causal Mediation (Pearl, 2014)</a></li>
                        </ul>
                    </li>
                    <li>TBD - Overflow Week</li>
                    <li>Causal Representation Learning
                        <ul>
                            <li><a href="http://www.its.caltech.edu/~fehardt/papers/CPE_UAI2015.pdf">Visual Causal
                                    Feature Learning (Chalupka, Perona, &amp; Eberhardt, 2015)</a></li>
                            <li><a href="https://arxiv.org/abs/1605.08179">Discovering causal signals in images
                                    (Lopez-Paz et al., 2017)</a></li>
                            <li><a href="https://arxiv.org/abs/1907.02893">Invariant Risk Minimization (Arjovsky et al.,
                                    2019)</a></li>
                        </ul>
                    </li>
                </ol>

            </div>
        </div>
    </div>


    <footer>
    </footer>






</body>

</html>

About

A repository for the NYUSH graduate seminar based on Brady Neal's Causal Inference Course.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published