-
Notifications
You must be signed in to change notification settings - Fork 0
/
lstm.py
301 lines (242 loc) · 11.1 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
"""Human activity recognition using smartphones dataset and an LSTM RNN."""
# https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition
# The MIT License (MIT)
#
# Copyright (c) 2016 Guillaume Chevalier
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Also thanks to Zhao Yu for converting the ".ipynb" notebook to this ".py"
# file which I continued to maintain.
# Note that the dataset must be already downloaded for this script to work.
# To download the dataset, do:
# $ cd data/
# $ python download_dataset.py
import tensorflow as tf
import numpy as np
# Load "X" (the neural network's training and testing inputs)
def load_X(X_signals_paths):
X_signals = []
for signal_type_path in X_signals_paths:
file = open(signal_type_path, 'r')
# Read dataset from disk, dealing with text files' syntax
X_signals.append(
[np.array(serie, dtype=np.float32) for serie in [
row.replace(' ', ' ').strip().split(' ') for row in file
]]
)
file.close()
return np.transpose(np.array(X_signals), (1, 2, 0))
# Load "y" (the neural network's training and testing outputs)
def load_y(y_path):
file = open(y_path, 'r')
# Read dataset from disk, dealing with text file's syntax
y_ = np.array(
[elem for elem in [
row.replace(' ', ' ').strip().split(' ') for row in file
]],
dtype=np.int32
)
file.close()
# Substract 1 to each output class for friendly 0-based indexing
return y_ - 1
class Config(object):
"""
define a class to store parameters,
the input should be feature mat of training and testing
Note: it would be more interesting to use a HyperOpt search space:
https://github.com/hyperopt/hyperopt
"""
def __init__(self, X_train, X_test):
# Input data
self.train_count = len(X_train) # 7352 training series
self.test_data_count = len(X_test) # 2947 testing series
self.n_steps = len(X_train[0]) # 128 time_steps per series
# Training
self.learning_rate = 0.0025
self.lambda_loss_amount = 0.0015
self.training_epochs = 300
self.batch_size = 1500
# LSTM structure
self.n_inputs = len(X_train[0][0]) # Features count is of 9: 3 * 3D sensors features over time
self.n_hidden = 32 # nb of neurons inside the neural network
self.n_classes = 6 # Final output classes
self.W = {
'hidden': tf.Variable(tf.random_normal([self.n_inputs, self.n_hidden])),
'output': tf.Variable(tf.random_normal([self.n_hidden, self.n_classes]))
}
self.biases = {
'hidden': tf.Variable(tf.random_normal([self.n_hidden], mean=1.0)),
'output': tf.Variable(tf.random_normal([self.n_classes]))
}
def LSTM_Network(_X, config):
"""Function returns a TensorFlow RNN with two stacked LSTM cells
Two LSTM cells are stacked which adds deepness to the neural network.
Note, some code of this notebook is inspired from an slightly different
RNN architecture used on another dataset, some of the credits goes to
"aymericdamien".
Args:
_X: ndarray feature matrix, shape: [batch_size, time_steps, n_inputs]
config: Config for the neural network.
Returns:
This is a description of what is returned.
Raises:
KeyError: Raises an exception.
Args:
feature_mat: ndarray fature matrix, shape=[batch_size,time_steps,n_inputs]
config: class containing config of network
return:
: matrix output shape [batch_size,n_classes]
"""
# (NOTE: This step could be greatly optimised by shaping the dataset once
# input shape: (batch_size, n_steps, n_input)
_X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size
# Reshape to prepare input to hidden activation
_X = tf.reshape(_X, [-1, config.n_inputs])
# new shape: (n_steps*batch_size, n_input)
# Linear activation
_X = tf.nn.relu(tf.matmul(_X, config.W['hidden']) + config.biases['hidden'])
# Split data because rnn cell needs a list of inputs for the RNN inner loop
_X = tf.split(_X, config.n_steps, 0)
# new shape: n_steps * (batch_size, n_hidden)
# Define two stacked LSTM cells (two recurrent layers deep) with tensorflow
lstm_cell_1 = tf.contrib.rnn.BasicLSTMCell(config.n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_cell_2 = tf.contrib.rnn.BasicLSTMCell(config.n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_cells = tf.contrib.rnn.MultiRNNCell([lstm_cell_1, lstm_cell_2], state_is_tuple=True)
# Get LSTM cell output
outputs, states = tf.contrib.rnn.static_rnn(lstm_cells, _X, dtype=tf.float32)
# Get last time step's output feature for a "many to one" style classifier,
# as in the image describing RNNs at the top of this page
lstm_last_output = outputs[-1]
# Linear activation
return tf.matmul(lstm_last_output, config.W['output']) + config.biases['output']
def one_hot(y_):
"""
Function to encode output labels from number indexes.
E.g.: [[5], [0], [3]] --> [[0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]
"""
y_ = y_.reshape(len(y_))
n_values = int(np.max(y_)) + 1
return np.eye(n_values)[np.array(y_, dtype=np.int32)] # Returns FLOATS
if __name__ == "__main__":
# -----------------------------
# Step 1: load and prepare data
# -----------------------------
# Those are separate normalised input features for the neural network
INPUT_SIGNAL_TYPES = [
"body_acc_x_",
"body_acc_y_",
"body_acc_z_",
"body_gyro_x_",
"body_gyro_y_",
"body_gyro_z_",
"total_acc_x_",
"total_acc_y_",
"total_acc_z_"
]
# Output classes to learn how to classify
LABELS = [
"WALKING",
"WALKING_UPSTAIRS",
"WALKING_DOWNSTAIRS",
"SITTING",
"STANDING",
"LAYING"
]
DATA_PATH = "data/"
DATASET_PATH = DATA_PATH + "UCI HAR Dataset/"
print("\n" + "Dataset is now located at: " + DATASET_PATH)
TRAIN = "train/"
TEST = "test/"
X_train_signals_paths = [
DATASET_PATH + TRAIN + "Inertial Signals/" + signal + "train.txt" for signal in INPUT_SIGNAL_TYPES
]
X_test_signals_paths = [
DATASET_PATH + TEST + "Inertial Signals/" + signal + "test.txt" for signal in INPUT_SIGNAL_TYPES
]
X_train = load_X(X_train_signals_paths)
X_test = load_X(X_test_signals_paths)
y_train_path = DATASET_PATH + TRAIN + "y_train.txt"
y_test_path = DATASET_PATH + TEST + "y_test.txt"
y_train = one_hot(load_y(y_train_path))
y_test = one_hot(load_y(y_test_path))
# -----------------------------------
# Step 2: define parameters for model
# -----------------------------------
config = Config(X_train, X_test)
print("Some useful info to get an insight on dataset's shape and normalisation:")
print("features shape, labels shape, each features mean, each features standard deviation")
print(X_test.shape, y_test.shape,
np.mean(X_test), np.std(X_test))
print("the dataset is therefore properly normalised, as expected.")
# ------------------------------------------------------
# Step 3: Let's get serious and build the neural network
# ------------------------------------------------------
X = tf.placeholder(tf.float32, [None, config.n_steps, config.n_inputs])
Y = tf.placeholder(tf.float32, [None, config.n_classes])
pred_Y = LSTM_Network(X, config)
# Loss,optimizer,evaluation
l2 = config.lambda_loss_amount * \
sum(tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables())
# Softmax loss and L2
cost = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=Y, logits=pred_Y)) + l2
optimizer = tf.train.AdamOptimizer(
learning_rate=config.learning_rate).minimize(cost)
correct_pred = tf.equal(tf.argmax(pred_Y, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, dtype=tf.float32))
# --------------------------------------------
# Step 4: Hooray, now train the neural network
# --------------------------------------------
# Note that log_device_placement can be turned ON but will cause console spam with RNNs.
sess = tf.InteractiveSession(config=tf.ConfigProto(log_device_placement=False))
init = tf.global_variables_initializer()
sess.run(init)
best_accuracy = 0.0
# Start training for each batch and loop epochs
for i in range(config.training_epochs):
for start, end in zip(range(0, config.train_count, config.batch_size),
range(config.batch_size, config.train_count + 1, config.batch_size)):
sess.run(optimizer, feed_dict={X: X_train[start:end],
Y: y_train[start:end]})
# Test completely at every epoch: calculate accuracy
pred_out, accuracy_out, loss_out = sess.run(
[pred_Y, accuracy, cost],
feed_dict={
X: X_test,
Y: y_test
}
)
print("traing iter: {},".format(i) +
" test accuracy : {},".format(accuracy_out) +
" loss : {}".format(loss_out))
best_accuracy = max(best_accuracy, accuracy_out)
print("")
print("final test accuracy: {}".format(accuracy_out))
print("best epoch's test accuracy: {}".format(best_accuracy))
print("")
# ------------------------------------------------------------------
# Step 5: Training is good, but having visual insight is even better
# ------------------------------------------------------------------
# Note: the code is in the .ipynb and in the README file
# Try running the "ipython notebook" command to open the .ipynb notebook
# ------------------------------------------------------------------
# Step 6: And finally, the multi-class confusion matrix and metrics!
# ------------------------------------------------------------------
# Note: the code is in the .ipynb and in the README file
# Try running the "ipython notebook" command to open the .ipynb notebook