Caution
This ML-DSA implementation is conformant with ML-DSA draft standard @ https://doi.org/10.6028/NIST.FIPS.204.ipd. I also try to make it timing leakage free, using dudect
(see https://github.com/oreparaz/dudect) -based tests, but be informed that this implementation is not yet audited. If you consider using it in production, be careful !
Module-Lattice-Based Digital Signature Standard by NIST.
ML-DSA is being standardized by NIST as post-quantum secure digital signature algorithm (DSA), which can be used for verifying the authenticity of digital messages, giving recipient party confidence that the message indeed came from the known sender. ML-DSA's security is based on hardness of finding short vectors in lattice i.e. it's a lattice-based Post Quantum Cryptographic (PQC) construction.
ML-DSA offers following three algorithms.
Algorithm | What does it do ? |
---|---|
KeyGen | It takes a 32 -bytes seed, which is used for deterministically computing a ML-DSA keypair i.e. both public key and secret key. |
Sign | It takes a 32 -bytes seed, a ML-DSA secret key and a N (>=0) -bytes message as input, producing ML-DSA signature bytes. For default and recommended hedged message signing, one must provide with 32B random seed. For deterministic message signing, one should simply fill seed with 32 zero bytes. |
Verify | It takes a ML-DSA public key, N (>=0) -bytes message and ML-DSA signature, returning boolean value, denoting status of successful signature verification operation. |
Here I'm maintaining ml-dsa
as a C++20 header-only constexpr library, implementing NIST FIPS 204 ML-DSA, supporting ML-DSA-{44, 65, 87} parameter sets, as defined in table 1 of ML-DSA draft standard. For more details on using this library, see below.
Note
Find ML-DSA draft standard @ https://doi.org/10.6028/NIST.FIPS.204.ipd, which you should refer to when understanding intricate details of this implementation.
- A C++ compiler with C++20 standard library such as
clang++
/g++
.
$ clang++ --version
Ubuntu clang version 17.0.6 (9ubuntu1)
Target: x86_64-pc-linux-gnu
Thread model: posix
InstalledDir: /usr/bin
$ g++ --version
g++ (Ubuntu 14-20240412-0ubuntu1) 14.0.1 20240412 (experimental) [master r14-9935-g67e1433a94f]
- System development utilities such as
make
,cmake
.
$ make --version
GNU Make 4.3
$ cmake --version
cmake version 3.28.3
- For testing correctness and compatibility of this ML-DSA implementation, you need to globally install
google-test
library and headers. Follow guide @ https://github.com/google/googletest/tree/main/googletest#standalone-cmake-project, if you don't have it installed. - For benchmarking ML-DSA algorithms, you must have
google-benchmark
header and library globally installed. I found guide @ https://github.com/google/benchmark#installation helpful.
Note
If you are on a machine running GNU/Linux kernel and you want to obtain CPU cycle count for ML-DSA routines, you should consider building google-benchmark
library with libPFM
support, following https://gist.github.com/itzmeanjan/05dc3e946f635d00c5e0b21aae6203a7, a step-by-step guide. Find more about libPFM
@ https://perfmon2.sourceforge.net.
Tip
Git submodule based dependencies will normally be imported automatically, but in case that doesn't work, you can manually initialize and update them by issuing $ git submodule update --init
from inside the root of this repository.
For ensuring functional correctness of this library implementation of ML-DSA and conformance with the ML-DSA draft standard, issue following command.
Note
ML-DSA Known Answer Tests, living in this directory, are generated following the procedure, described in https://gist.github.com/itzmeanjan/d14afc3866b82119221682f0f3c9822d.
make -j # Run tests without any sort of sanitizers
make asan_test -j # Run tests with AddressSanitizer enabled
make ubsan_test -j # Run tests with UndefinedBehaviourSanitizer enabled
PASSED TESTS (12/12):
3 ms: build/test.out ML_DSA.HintBitPolynomialEncodingDecoding
4 ms: build/test.out ML_DSA.HashingToABall
4 ms: build/test.out ML_DSA.PolynomialEncodingDecoding
13 ms: build/test.out ML_DSA.Power2Round
42 ms: build/test.out ML_DSA.MakingAndUsingOfHintBits
78 ms: build/test.out ML_DSA.ML_DSA_44_KeygenSignVerifyFlow
116 ms: build/test.out ML_DSA.ML_DSA_44_KnownAnswerTests
123 ms: build/test.out ML_DSA.ML_DSA_87_KeygenSignVerifyFlow
126 ms: build/test.out ML_DSA.ML_DSA_65_KeygenSignVerifyFlow
170 ms: build/test.out ML_DSA.ML_DSA_65_KnownAnswerTests
276 ms: build/test.out ML_DSA.ML_DSA_87_KnownAnswerTests
767 ms: build/test.out ML_DSA.ArithmeticOverZq
You can run timing leakage tests, using dudect
, execute following
Note
dudect
is integrated into this library implementation of ML-DSA to find any sort of timing leakages. It checks for constant-timeness of most of the vital internal functions. Though it doesn't check constant-timeness of functions which use uniform rejection sampling, such as expansion of public matrix A
or sampling of the vectors s1
, s2
or hashing to a ball etc..
# Can only be built and run on x86_64 machine.
make dudect_test_build -j
# Before running the constant-time tests, it's a good idea to put all CPU cores on "performance" mode.
# You may find the guide @ https://github.com/google/benchmark/blob/main/docs/reducing_variance.md helpful.
timeout 10m taskset -c 0 ./build/dudect/test_ml_dsa_44.out
timeout 10m taskset -c 0 ./build/dudect/test_ml_dsa_65.out
timeout 10m taskset -c 0 ./build/dudect/test_ml_dsa_87.out
Tip
dudect
documentation says if t
statistic is < 10
, we're probably good, yes probably. You may want to read dudect
documentation @ https://github.com/oreparaz/dudect. Also you might find the original paper @ https://ia.cr/2016/1123 interesting.
...
meas: 48.38 M, max t: +2.77, max tau: 3.99e-04, (5/tau)^2: 1.57e+08. For the moment, maybe constant time.
meas: 48.48 M, max t: +2.73, max tau: 3.93e-04, (5/tau)^2: 1.62e+08. For the moment, maybe constant time.
meas: 48.57 M, max t: +2.76, max tau: 3.96e-04, (5/tau)^2: 1.59e+08. For the moment, maybe constant time.
meas: 48.67 M, max t: +2.78, max tau: 3.99e-04, (5/tau)^2: 1.57e+08. For the moment, maybe constant time.
meas: 48.76 M, max t: +2.79, max tau: 3.99e-04, (5/tau)^2: 1.57e+08. For the moment, maybe constant time.
meas: 48.85 M, max t: +2.78, max tau: 3.97e-04, (5/tau)^2: 1.58e+08. For the moment, maybe constant time.
meas: 48.95 M, max t: +2.79, max tau: 3.98e-04, (5/tau)^2: 1.58e+08. For the moment, maybe constant time.
meas: 49.05 M, max t: +2.77, max tau: 3.95e-04, (5/tau)^2: 1.60e+08. For the moment, maybe constant time.
meas: 49.14 M, max t: +2.69, max tau: 3.84e-04, (5/tau)^2: 1.70e+08. For the moment, maybe constant time.
meas: 49.24 M, max t: +2.75, max tau: 3.92e-04, (5/tau)^2: 1.62e+08. For the moment, maybe constant time.
meas: 49.33 M, max t: +2.73, max tau: 3.89e-04, (5/tau)^2: 1.65e+08. For the moment, maybe constant time.
meas: 49.43 M, max t: +2.76, max tau: 3.93e-04, (5/tau)^2: 1.62e+08. For the moment, maybe constant time.
meas: 49.52 M, max t: +2.76, max tau: 3.92e-04, (5/tau)^2: 1.63e+08. For the moment, maybe constant time.
meas: 49.62 M, max t: +2.79, max tau: 3.97e-04, (5/tau)^2: 1.59e+08. For the moment, maybe constant time.
meas: 49.71 M, max t: +2.78, max tau: 3.94e-04, (5/tau)^2: 1.61e+08. For the moment, maybe constant time.
Warning
Relying only on average timing measurement for understanding performance characteristics of ML-DSA sign
algorithm may not be a good idea, given that it's a post-quantum digital signature scheme of "Fiat-Shamir with Aborts" paradigm - simply put, during signing procedure it may need to abort and restart again, multiple times, based on what message is being signed or what random seed is being used for default hedged signing. So it's a better idea to also compute other statistics such as minimum, maximum and median ( pretty useful ) when timing execution of sign
procedure. In following benchmark results, you'll see such statistics demonstrating broader performance characteristics of ML-DSA sign
procedure for various parameter sets.
Benchmarking key generation, signing and verification algorithms for various instantiations of ML-DSA can be done, by issuing
make benchmark -j # If you haven't built google-benchmark library with libPFM support.
make perf -j # If you have built google-benchmark library with libPFM support.
Caution
Ensure you've put all CPU cores on performance mode, before running benchmarks, follow guide @ https://github.com/google/benchmark/blob/main/docs/reducing_variance.md.
Compiled with gcc version 14.0.1 20240412.
$ uname -srm
Linux 6.8.0-39-generic x86_64
2024-08-05T11:18:02+05:30
Running ./build/perf.out
Run on (16 X 400.497 MHz CPU s)
CPU Caches:
L1 Data 48 KiB (x8)
L1 Instruction 32 KiB (x8)
L2 Unified 1280 KiB (x8)
L3 Unified 18432 KiB (x1)
Load Average: 1.34, 1.24, 1.07
-------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations CYCLES items_per_second
-------------------------------------------------------------------------------------------------
ml_dsa_44_verify/32_mean 62.3 us 62.3 us 32 270.887k 16.0698k/s
ml_dsa_44_verify/32_median 63.1 us 63.1 us 32 270.89k 15.8604k/s
ml_dsa_44_verify/32_stddev 1.60 us 1.60 us 32 624.918 421.113/s
ml_dsa_44_verify/32_cv 2.56 % 2.56 % 32 0.23% 2.62%
ml_dsa_44_verify/32_min 58.2 us 58.2 us 32 269.723k 15.4084k/s
ml_dsa_44_verify/32_max 64.9 us 64.9 us 32 272.841k 17.1813k/s
ml_dsa_87_keygen_mean 163 us 163 us 32 698.496k 6.15064k/s
ml_dsa_87_keygen_median 163 us 163 us 32 698.116k 6.15115k/s
ml_dsa_87_keygen_stddev 5.35 us 5.35 us 32 4.08823k 204.362/s
ml_dsa_87_keygen_cv 3.29 % 3.29 % 32 0.59% 3.32%
ml_dsa_87_keygen_min 150 us 150 us 32 690.372k 5.77973k/s
ml_dsa_87_keygen_max 173 us 173 us 32 706.344k 6.67045k/s
ml_dsa_65_verify/32_mean 103 us 103 us 32 443.358k 9.68297k/s
ml_dsa_65_verify/32_median 103 us 103 us 32 443.689k 9.66634k/s
ml_dsa_65_verify/32_stddev 3.04 us 3.04 us 32 1.28769k 282.649/s
ml_dsa_65_verify/32_cv 2.94 % 2.94 % 32 0.29% 2.92%
ml_dsa_65_verify/32_min 99.0 us 99.0 us 32 440.394k 9.09262k/s
ml_dsa_65_verify/32_max 110 us 110 us 32 445.528k 10.102k/s
ml_dsa_87_sign/32_mean 609 us 609 us 32 2.6577M 2.18941k/s
ml_dsa_87_sign/32_median 610 us 610 us 32 2.66831M 1.64061k/s
ml_dsa_87_sign/32_stddev 325 us 325 us 32 1.39882M 1.18589k/s
ml_dsa_87_sign/32_cv 53.28 % 53.28 % 32 52.63% 54.16%
ml_dsa_87_sign/32_min 243 us 243 us 32 1.09957M 695.404/s
ml_dsa_87_sign/32_max 1438 us 1438 us 32 6.19204M 4.10823k/s
ml_dsa_87_verify/32_mean 169 us 169 us 32 721.896k 5.93997k/s
ml_dsa_87_verify/32_median 169 us 169 us 32 721.902k 5.9345k/s
ml_dsa_87_verify/32_stddev 5.59 us 5.58 us 32 1.45918k 196.633/s
ml_dsa_87_verify/32_cv 3.31 % 3.31 % 32 0.20% 3.31%
ml_dsa_87_verify/32_min 155 us 155 us 32 719.374k 5.57533k/s
ml_dsa_87_verify/32_max 179 us 179 us 32 724.646k 6.45852k/s
ml_dsa_65_sign/32_mean 487 us 487 us 32 2.12482M 3.13727k/s
ml_dsa_65_sign/32_median 372 us 372 us 32 1.60891M 2.69802k/s
ml_dsa_65_sign/32_stddev 384 us 384 us 32 1.70012M 1.81803k/s
ml_dsa_65_sign/32_cv 78.82 % 78.82 % 32 80.01% 57.95%
ml_dsa_65_sign/32_min 162 us 162 us 32 724.192k 606.363/s
ml_dsa_65_sign/32_max 1649 us 1649 us 32 7.44815M 6.16409k/s
ml_dsa_44_sign/32_mean 289 us 289 us 32 1.26354M 4.94307k/s
ml_dsa_44_sign/32_median 202 us 202 us 32 885.986k 4.96339k/s
ml_dsa_44_sign/32_stddev 210 us 210 us 32 908.538k 2.5997k/s
ml_dsa_44_sign/32_cv 72.84 % 72.84 % 32 71.90% 52.59%
ml_dsa_44_sign/32_min 106 us 106 us 32 474.061k 948.065/s
ml_dsa_44_sign/32_max 1055 us 1055 us 32 4.37527M 9.41556k/s
ml_dsa_65_keygen_mean 101 us 101 us 32 433.69k 9.93793k/s
ml_dsa_65_keygen_median 99.6 us 99.6 us 32 433.649k 10.0425k/s
ml_dsa_65_keygen_stddev 3.12 us 3.12 us 32 973.148 303.96/s
ml_dsa_65_keygen_cv 3.10 % 3.09 % 32 0.22% 3.06%
ml_dsa_65_keygen_min 93.8 us 93.8 us 32 431.835k 9.32141k/s
ml_dsa_65_keygen_max 107 us 107 us 32 435.258k 10.6581k/s
ml_dsa_44_keygen_mean 59.4 us 59.4 us 32 255.647k 16.8513k/s
ml_dsa_44_keygen_median 59.8 us 59.8 us 32 255.181k 16.7347k/s
ml_dsa_44_keygen_stddev 1.65 us 1.64 us 32 3.67228k 469.9/s
ml_dsa_44_keygen_cv 2.77 % 2.77 % 32 1.44% 2.79%
ml_dsa_44_keygen_min 56.7 us 56.7 us 32 250.237k 16.1611k/s
ml_dsa_44_keygen_max 61.9 us 61.9 us 32 263.83k 17.6413k/s
ml-dsa
is a header-only C++20 constexpr library, mainly targeting 64 -bit desktop/ server grade platforms, which is also pretty easy to use. Let's see how to get started with it.
- Clone
ml-dsa
repository.
cd
# Multi-step cloning and importing of submodules.
git clone https://github.com/itzmeanjan/ml-dsa.git && pushd ml-dsa && git submodule update --init && popd
# Or do single step cloning and importing of submodules.
git clone https://github.com/itzmeanjan/ml-dsa.git --recurse-submodules
# Or clone and then run tests, which will automatically bring in dependencies.
git clone https://github.com/itzmeanjan/ml-dsa.git && pushd ml-dsa && make -j && popd
- Write a program which makes use of ML-DSA-{44, 65, 87} key generation, signing and verification API ( all of these functions and constants, representing how many bytes of memory to allocate for holding seeds, public/ secret key and signature, live under
ml_dsa_{44,65,87}::
namespace ), while importing proper header files.
// main.cpp
// In case interested in using ML-DSA-65 or ML-DSA-87 API, import "ml_dsa_65.hpp" or "ml_dsa_87.hpp"
// and use keygen/ sign/ verify functions living either under `ml_dsa_65::` or `ml_dsa_87::` namespace.
#include "ml_dsa/ml_dsa_44.hpp"
#include "ml_dsa/internals/rng/prng.hpp"
int main() {
// --- --- --- Key Generation --- --- ---
std::array<uint8_t, ml_dsa_44::KeygenSeedByteLen> seed{};
std::array<uint8_t, ml_dsa_44::PubKeyByteLen> pubkey{};
std::array<uint8_t, ml_dsa_44::SecKeyByteLen> seckey{};
// PRNG.
// Be careful, read API documentation in `ml_dsa/internals/rng/prng.hpp` before you consider using it in production.
ml_dsa_prng::prng_t<128> prng;
prng.read(seed);
ml_dsa_44::keygen(seed, pubkey, seckey);
// --- --- --- Message Signing --- --- ---
std::array<uint8_t, ml_dsa_44::SigningSeedByteLen> rnd{};
std::array<uint8_t, ml_dsa_44::SigByteLen> sig{};
// 32 -bytes randomness, for default and recommended *hedged* message signing.
prng.read(rnd);
// For deterministic message signing, uncomment following statement, while commenting above statement.
// std::fill(rnd.begin(), rnd.end(), 0);
constexpr size_t msg_byte_len = 32; // message byte length can be >= 0
std::array<uint8_t, msg_byte_len> msg{};
// Sample a psuedo-random message, to be signed.
prng.read(msg);
ml_dsa_44::sign(rnd, seckey, msg, sig);
// --- --- --- Signature Verification --- --- ---
const bool is_valid = ml_dsa_44::verify(pubkey, msg, sig);
assert(is_valid);
return 0;
}
- Finally compile your program, while letting your compiler know where it can find
ml-dsa
and its dependency headers.
# Assuming `ml-dsa` was cloned just under $HOME
ML_DSA_HEADERS=~/ml-dsa/include
SHA3_HEADERS=~/ml-dsa/sha3/include
g++ -std=c++20 -Wall -Wextra -pedantic -O3 -march=native -I $ML_DSA_HEADERS -I $SHA3_HEADERS main.cpp
ML-DSA Variant | Namespace | Header |
---|---|---|
ML-DSA-44 Routines | ml_dsa_44:: | include/ml_dsa/ml_dsa_44.hpp |
ML-DSA-65 Routines | ml_dsa_65:: | include/ml_dsa/ml_dsa_65.hpp |
ML-DSA-87 Routines | ml_dsa_87:: | include/ml_dsa/ml_dsa_87.hpp |
✨
All the functions, in this ML-DSA header-only library, are implemented as constexpr
functions. Hence you should be able to evaluate ML-DSA key generation, signing and verification at compile-time itself, given that all inputs are known at compile-time, of course.
I present you with following demonstration program, which generates a ML-DSA-44 keypair, signs a message, producing a ML-DSA-44 signature and finally verifies the signature - all at program compile-time. Notice, the static assertion.
// compile_time_ml_dsa_44.cpp
//
// Compile and run this program with
// $ g++ -std=c++20 -Wall -Wextra -pedantic -fconstexpr-ops-limit=125000000 -I include -I sha3/include compile_time_ml_dsa_44.cpp && ./a.out
// or
// $ clang++ -std=c++20 -Wall -Wextra -pedantic -fconstexpr-steps=19000000 -I include -I sha3/include compile_time_ml_dsa_44.cpp && ./a.out
#include "ml_dsa/ml_dsa_44.hpp"
// Compile-time
//
// - Generation of a new keypair, given seed
// - Signing of a known message
// - Verification of signature
//
// for ML-DSA-44, using KAT no. (1). See kats/ml_dsa_44.kat.
constexpr auto
ml_dsa_44_keygen_sign_verify() -> auto
{
// 7c9935a0b07694aa0c6d10e4db6b1add2fd81a25ccb148032dcd739936737f2d
constexpr std::array<uint8_t, ml_dsa_44::KeygenSeedByteLen> ξ = { 124, 153, 53, 160, 176, 118, 148, 170, 12, 109, 16, 228, 219, 107, 26, 221, 47, 216, 26, 37, 204, 177, 72, 3, 45, 205, 115, 153, 54, 115, 127, 45 };
// 0000000000000000000000000000000000000000000000000000000000000000
constexpr std::array<uint8_t, ml_dsa_44::SigningSeedByteLen> rnd{};
// d81c4d8d734fcbfbeade3d3f8a039faa2a2c9957e835ad55b22e75bf57bb556ac8
constexpr std::array<uint8_t, 33> msg = { 216, 28, 77, 141, 115, 79, 203, 251, 234, 222, 61, 63, 138, 3, 159, 170, 42, 44, 153, 87, 232, 53, 173, 85, 178, 46, 117, 191, 87, 187, 85, 106, 200 };
std::array<uint8_t, ml_dsa_44::PubKeyByteLen> pkey{};
std::array<uint8_t, ml_dsa_44::SecKeyByteLen> skey{};
std::array<uint8_t, ml_dsa_44::SigByteLen> sig{};
ml_dsa_44::keygen(ξ, pkey, skey);
ml_dsa_44::sign(rnd, skey, msg, sig);
return ml_dsa_44::verify(pkey, msg, sig);
}
int
main()
{
// Notice static_assert, yay !
static_assert(ml_dsa_44_keygen_sign_verify() == true, "Must be able to generate a new keypair, sign a message and verify the signature at program compile-time !");
return 0;
}
See example program, which demonstrates how to use ML-DSA-44 API, similarly you can use ML-DSA-{65, 87} API.
$ g++ -std=c++20 -Wall -Wextra -pedantic -O3 -march=native -I ./include -I ./sha3/include examples/ml_dsa_44.cpp && ./a.out
ML-DSA-44 @ NIST security level 2
Seed : afc6c351c70775e04b4ece579e72400afbb31fe8bad3d1d8ed0ba40526b0d528
Pubkey : 0405c237bfd3436898f31ffcd6e3510ca38b6dbe1772943a59ebabb83e7f3400ee064e5f4c63fc7347c4598011a638911e3a0815dc7f11b663006fd8a5871e1ec46d7f6230996c64eb9ae192aba4c5b3fc6cf8cf9b8e2af33ad46f39775c00e2437a5bc6a9f92839c8d09b755f003e5b59f798844965aff3ed2198282d933976a0bb65c62b3f7774f082037c7a23cd632c95765783ee7e95c3a750ab99a0f22aab658e434d60a1d17dd9ab9d37ea1c0b36b856abcf5028551799725bcc39226863f3971c5a9b98f3999c6763b221222e19deb63414e9fc56dad230fbaef157df3f23f9f229aa2bc22b2b445bf464bd5aee24d6b4a8ba1e916fc1e40ba61b405212584246f0888724b4f8f79449d9cb4757a91fd35775d7e08715cfce703fbe7d69cf260e9617601fff3945101934e9a979c47ebd88de30c7c434dfc9e955136063ab01654548bc9767faaaa7dd6bf6d79264217fc8187cc884cf96844d28c63e4334c35b1aa4fa80b37b1ea8a6aae40006112eaed4bfab952adc2621a00b090072108119985bb14485ce9a8193829f8d739081c632e665e9074a43c2f7ebc2207aae38d1b2ab101a09dc4df322c23035fc67258a67d644b12d1674af3ac151f64618f533ea85aedc3308e3d439003ee908e960f846852d61722f11cc24b8dce16a9a857a2fd407d90196558e01c3d32c65aea09acceab6f42a971f44608d67a432616793c57c7cdf4f8a2db115fa0ea14538399246755a3347bb54285b5a11b7f3672949b998f7ca54e7afae23b54babca52302b4318e7fb8c4daa92c9a74dac9c26738e47f4e094075b7a251e375038d9aa7ef821930feac261c83cdd7cde3c5aaeb21a9a17c1812983db7c0c1dba3d7b8a4790d4016b4f1688a75e6273cfbc13c73f5bb6f2ed1e368294ae1cd819877f9a2f91e51d459283a6bceb09ac2c3ba48a53da892082091a896c272aea9036d5045fc30f91384e613f427efd3bebbda5e4fe54b53ec123e048f5739f88bba2507295f476e0ef0208a5ee89845a7be33f269329aa74366ccb89473900367de9a63b3ccd6a88e5e3834b453bb5edf33301acdc2ac1e9884b5dfbf4ca39546062568bb6e58c77fbccf12294a518e624d4d1c2f6d806e4e27582c7756ba6301504af4e755266141f329dd67b4f89155dae840ccbe7cdae96830ff64c24eee30bee5a0ff55c4c8453fe63a75f7a6eb4588def226866c93f656db4c74d25fab26fe1dd07fb0dc1567f1887e63e90a00046f7cc31adf13b4454bae760709cb730e1ac774a7e7642651b4e631e2c10bec32d966fd9671030259c151cd39773381fb10ed25f4397bfc55258d55561f37e1901239cd05016a30fb95953e5644819ae3fc8c2c5df4fb33f6621fb5a8ac2a74b1cc57226b65fb35d3af3030233af845c2b3f78a20056d497352931777cb90350a6de9a4719585b8b5732526621cb77d9b41f3f54d05ee4df1e176c1bc0da781ccf4fa49bd5ec231834cb808b7dd97be8994c38ca1bbf176b9ed159d82d660ebc28511dd63bd4c38ff33cbaf8b15976fdd17f9e94dabeaa6336c2661677405764d25c7fc62f3e367426e286520e2d5be867cd069fcc6d9dd746fd18b76b4c47ab71b7f8218d2f2dfea0d23ef5cbdd3b5503f94f4828ab78a33d180bfcd24600ab51a4a6022df89a781865e3d597adf4a20e9dc5f02ff34ead0aa8baeee79e54c1ac10fc5c0852e82e41860c7b48af16120c977be7522bc9ad66563f74e76956ce6c5031eae8d5ff55964788332ac6971466bc426b82293f81227be20bfcaacd7700fd729c0c25dbeda4097da84b2edd565a49fcb2e8503a90d6fd13a6e17cd4beb322
Seckey : 0405c237bfd3436898f31ffcd6e3510ca38b6dbe1772943a59ebabb83e7f340094a5e972e060c891e14abc20bb2c74179a645564e462ef870305b86c9e0a0c0df4c1bef4a9b97b23bbc37e1c11c4e5b7d8c65bacf9ebbcca4ea7b7b09d5261f7399f9ef7160253f6badad2e4ef98bd0e89f980f725438cddecff945e366f6903112270012049db30620b146a41966110160e02b490089281a234881c3786ca983001370180128211982193360a41248520b2841aa16d61165024870d0c3191c48028192630d82672da221140920888288e03a3515c440e62928d1206495920604c8225100152a20208181211109505da046422231221849019964549046c1a266a18c160143524c0260e1bc281db1822030545044124a44251a18091190804c8044edb222edb36810b010a1a92709344129822651b03208210289422814298405a822d83102554966849b69100432d61047052064ea18650a1888cca344cd446210c816d1813910b9145912068e104202391440c8250244705c4428ccb345254860400144983846809a0655a0605481232000086d13020a31002a0228203a2110c0541149105c3c46ccc8650c9165141c064e30446184509083708e4281002999182b0491a9471dac68c14400520918dc0b07121371100854c111386e2166a23c40562c8201ab110194032c832220a976d9bc4301336306226520aa65004242e93266ce2460a8834288b2204913660d808460021018b9648d4269220b36013c34559068103c6019aa488c8960c0cc63150381161146603b7681a22080bc63124822de0202c83c03082c61100c31009008419b5840a49661b032183c251d1b61003152908940984826d9ca44004496ccaa220422228543886cb92710ac180992092d10062832232e4948d94946124122599466c88206652944d43265214998d0a832918206d11094911371290a6844194898a428c60124a60980404479220c8408b000c1aa1048c8444583849d030040a846c98306ec9b25189042e89c6208ab0211a25045244311b086a19229284023181822d1840518ca450db0646dc304459a204d21689d30061a2484ec8906122468104216d248048c344729bc06498048c522425c11200c436321bb06401170604390512a804d1266058226809a5888932300118021183495132490c09291a270420868001022002a040223241dc06221aa74d8cc8451ca9250a360ec09605d9a850d9462e6388710ba365149381022288eee511767dcd290bf6ee1519b9307c1deaf3331a49cd9f6a1335c0ed950974a87c2479bfe27dd681bc72836535914d75d0a715a6ed8fd58a5cae45b89550e486c6ab80e73e687f5c865a72c35f63d3a7116f417258645268ed26723127d2724fe5ff65db9a41ff1a13cfc4f6b182e932a0ef3f2cb5375bfd9bb0c602ace85ab7b85bec9f3368195cbc11b105eacd4f0c1da51653bb1b0cfbd4ce9c4670524bc735c02686c8fd2190c6cd0de7dda55cb90193d983ad33b589caa23ef051a5d3aaf23661e045f9e143ac3a2abef34aeac67d8ffb86d37db855b4477f9dae2b221c4e5f4bf8f591cf3f42e3a06acff9b70d06c90f7a3710e453f68c4afa12701255053a9658d9c6dfaf22e3943b33299c4708d8f24283cfd2ded96f5bbf6b7c0e9e1a8b7bea9273db4d8dffcca213e447e59a1f66bbe57741161bcd558f902c31715664608b67ef5aa44ff0cbbd4e6b2afbafb437719d5e5d3b04281ee8ed32fc6c00a502190007e85e843bca59ca0cd21ee269bce56cf15793c61d30f89840b3c39c6a5b5385773f76d24410cc6f080e766e841d0bc458103bbe4a89fedb3a755489032ac63441217984777476fbb5766cd4f9abbc46a0b0e899a968a7d20492c434c69b98ac3f888af7a186c29ee08b66659e9fbab15814d277e1b4b60c1ab83650646128a894552598e129c0d6bd3cd09636460144200d8c2f28331e17665c32fe20870eab70f3e439af45831b09a7dba48d0ec044836e29b830c4243e490a3a1f0a6e027123b8132d7653c24f3c7e7cea4ef624ca932324be4665fe441550108ffc025ebfbb9e097ab3a40f7a50f70d9c84d4c096d8e9e5906969a847db65f1ca313731f311a75ee84a7c33319c2444cc6f2b9a6907a2778d0dbd0b6c029042b2f3b179dc0c0bbb15413e68c3a5432eae76edc0fab8c0aac7ebf0cb9a8affe8ddc698729344642573b83934ecd46202bbe5bafba7cf69322fd4789f9db7ffd6a8a26e011ba1a3e13d36962f9f99661140c0dbee5d493686a57de3c4911094224d51e6f4cc1ff6e5de7817f8a7a2f0bd72d048f4f394868dc5aee4afbec2c5e90dcbeaff20d86edf496fc945818a4ce0e435f6d44c20d8b0d62ccfd611f184dcd4041ed74625a15b318850b82934ff5f2c8f76eb0568ae2885bef1660ef7385c70666fcce0c3f153da8e031ab05f3af2828c2d62a465cc2d02a0771a68898c2df7c3ccec26305694a665f0384ac42fa48f4f5e4bc473aaccb80f5da9e1e868bc0284c91f7fe8e1f0195066f05cdb1dac6d56a10c2323069f0765005c4d68e96e0b06ad8955f7f3a7d3ccf5f537a6aea40f7c9d7f4a9d17a0b7022ad79322a3b4aee04e8a7ea8bc70dbba245c4e1c1a74248c36df727c7349f09a392daaacd2190fd743cdd3fde0d6ddb6766734ac73c13434441f65713764458360fb905ac9ddbc0a151cde4938ad24ffb3c4fec13152e6937014c121001b4531d92898bc10d2881815080c50f120e1ca69033b302df5badbe5c7d8a7300cf8af1a1505d4d8ffde676eaf2125652e84407da961bfbf11382bde35f3bbd2a74d1b52424b95c76fbb71054263915812876583ebe748786445f4a7a88ea544e29216621daf16a2de80fc9c99b9b1128ae8b6a74914ffafd25ac6c2d33bf1d2e856e10c3c47741d2646ec5b1947d9371fa2fd824fe3593142bb6561d35a26b7ec23b28f922bbe73999ce80abff40847bdb8efe0e281b2aa2f15c9ad3712f243cc8dd6c157e4669d7f11d827e3c6920b91a5d27dd7137ec78aa54c6c7ff101064a3e86dd3ae1fcf8900c39cb8d13deb9345bb070752c08170bc9153037f21e4b5a9239ea1efb484745d42a8136e5fb52a3a9bebf1873af39854f0e377e7cb178183a3ed9d9a2f2a99056b0a05c03cd95c49fdad85f981b15376f01237e25ed77f5d66ed5da2c5d76814b9c16b2f177612241509cb71deb5d499335c15e8ba7472d648b1bfc316f77ad7e51cfed3e48d95395bebcf7cfdae63c22793b86955708f39dc6d219d11dfda22d799bbb577e6eb33ce827f99dbdf2759995a1534e4ca186ca4048c401dd531f360fb2f3b3ba114fd67a7f30a7f31e7596bcf104327165572f98decf5df3e3ab62dc7b6ee08aafe8eefc710ec5fb11ff640dacb6cd19a112b1551c26f6c04b976f1020b4dce029489aa47ec5487eb5d4912902ece656f9ddb313557560c2ca016740b8dfa651ebd26233b9150c9ceb8706fa404a61b80ae2a1b89741c5b133ef9424a828402c8a80340f91c686c312f268ee455745f2096223a6ad4304e3c2945b1d4ce2897c58655baf0afb9333c1f723df36c583b69a1aa2d491095ef2794d
Message : 8a556fe4a5e29a37e80f2ad8f3f8679f1cd3f22b1532bd171373f76aa1402158
Signature : 21ac8a09005d0101947b64865daf8559c175722647248ad3d8897d78ba0ea81e49d1130e9f830e9fbed5b1f4dd37517d5571bd70ba47494ab05fe4ec1a67e7343c929ea956638ca501f1b6ef21887b094ece20782410349b2dca72173ef1ba6e8384bdf83d97c2cfece5b3e083eb9165052ca04c1f921867999465d8bcee76df4bc8db038f90b6be7219cf1225e40ccb3e4bbfce01c823f3631a03dc04324053591b9a9460799a882eeb4aec3338dd7d7fe25b047350f94bb547ce9d33a60d41c4200af881a24be6759c2e0e9c204b95460c0597190b571220ff3db6881ea82b91766936dbf2016985a15f0b502e690cbfbd5c1d4a1634146347ac556657de1d54fb2f2c40b6cee3ceaf9118670afa14b707a4dea5c0a7cb2da67ffb29d32a045cbad61b5f96ac5715172bdba6f99b2452260205c59e90bb012577b3b5a4e5aa90e5f5edeef93c70e4ad8ca2552dbeb78d2aca528da4083f52bb57eb11e1e6c1d25c4307a949a7d1172e6a7d496a3c419627b7b26797cc07778cf5db5807dfd68c8e4893323fc0d39f9a25997493cb088e74ec8539f54b1eb988329c2c23310d671bb20c7f2bbadd7bc315f322b1d863674a796b519a52433545e3d428b83743d5edde7882f0048a2133d270bd836b62acd7f6715c8875af4de8d3aff0100bf386d241f6007ca363ade61052415951ab93f2a078ea8510dc951de2c22c604f944838c08122bb52eee5b3590518811b5a718ed54e45eac2b937a66e96e678295e648525187c07ec3a7580a2c30bd35fb95b497032876e3be1b98c8044f65873091b8de16b0ec312e853d9347e669b3ed53083e1f0dd69cbbd6d8d0dc81510df83cac2202435c17481f86aceef80ceae04859b0b1a4c63052202ccfdc2df0698297066c0cb7b32b446830a7fcb040b1563b43b72e6b69a8245d5f5a3b37d89fead3783ac7a64bedd6d2e24811489d134a68ecb55856698643aebb3fcfc8ccb3bb4b2d4f7803146baf8f11a644adce99a4ebc700993bf1425372538fb23edce62934dac6676c5ef97d3f9b05ef7a7cbd4fd54faacf368cacdebd01a8e0db394a42a973d3856c5a93d84b1a8287ae42d9a67a48340b4261c5ca7a72bb50f7a5edbaaaeeb8fb4bcd3edf5cb57c9bba1b8a46c179a880f62a8e4b7438ffbeb0c9520e3bda2d889d9ce575ae44c6f54653817fe6e5497c96dcf422e8296833af9358980592a905a26a1242d143be7c2b0a0fab5306942316dab224c93b451b42e0681fe589811fac5c27461a9b001682f3b737fefc2dabd9985f44ef099d39c09bf9df742cd87d64cc724a12fb38b4849093182270c34f9e863a8d63cccb724c8dba45172528ba308764e8ab15fd295f3656c5fb7f989c1df829e3356233bb81d90f57bd707688922c1adfcc0e157a5b23de37f4b46c1972482abc7380e45c6332d66b33518db901ed9a158f69bf650d1fb87021f4756934b5af82e1e8f60e6dff7e6c60fd4529160bfcacfde14552741d15458c1985491b2fc5d58a95b322083ef0ef9c09d99ee6227a4d58372650d5771fe9465000eab53d1a304a3711d0e9c695c0044450a318e7b0b30ffdde0fc551bd1aa7a757ae3326b7241575afb4ccc1c9fe357766474c02ce3a819e898ea883b62c657d5adea98e1033c85212d628059e55f512e2f70d3d41705b66420d98e68bca4ed4835798bb69eb36db77a6cf41bb2cd6ac2775532c309375230010e8b51a418d1fddcbd7e832a3c63096ff49a72dc201df38f8a777a1c7020d281139cff300726c4022dc8cf391eb9e7470353a636e7473ac3d69bc7b369bb5f0f427588eb7f1b104b51de3e2491b34c96c11c988b13c9c1821a4b552135e91dfacd4bbce7470be044a39b4fb712820312ead2e37943e61df1520a3c949998881ea8ce8bd9bfa7712bf269428a9cdaf31344d6117f8a2bb9cffd7bc65422bedc15c9df31c3565ab14fd7a2ede211db28036a675768192bdefd3e5daca8f9e1dc6879544e8e2c5c5364e8730c9e9d927b42a6f4e4b338db0979832cb57bb6d2df262d1303a90be408cc4cc599e00ff232fc56011199c80fae882e2215e3d56bc4870dd38c456884be9851d74bf590e30296ec63ec2d1b5035e925576da75e651734ecb8d833a040548c8cad1da19c45e8af09f9e317974a6130e65fdb53b47e21249f8f1917be9343745d9cdf6372239e82977750049066653352c54776d6cb76f116a7e813e07adbb9a1b22359e2153304fbf663b66e04fb839b4cec729ad3eb256ee7c4d590c53259e220a27559660437ff85575195174b2cfb73cd136c4b3b6d7c1f9344248e270f1484a08db82715857af9f7c3d5a0545ec0a9f9b8ee819450c5f6861814b8191bd590b1bcf366b173c84eacab317df4f5df6968757f51e3853993bdc41232117dc47c4b2a7eeb75016af941158ad1199aeed114af1b60cc10203f8bea42ae522e42ee0549ba1b114efb712eb785b482c639707ef3c1ca0513e00c8731fdbe19e54461ce99ea798ae232175108ef0a16fd3d5427a0f2d83fe5c99ca1299b3f356d9acf546b2a4e065baa2e3deab7868d1049e5f656306accaea3154afb11ef0ebac1bba37e164592b8634cf8dd8b9f2bb21153bb60c2638c4cc691cc8d16a7359a7b69bbdf7127c067da1c0ff4127ac368d86c3f8939740597145e121df57adbf7efeec9b91ce1a3c4ef89fbf8b050f9b5e994fff2b2eb5cfb6dee6b3bc45b567d36f3114ec2415870d8f09d83f48c55584d2279c083affd4dd3011fa0aed0d2759a8c69a6212ea32704a4b0f4eacf158ea3fb5d7d8d6c63d01efa964370a1f65082c3944b4524a3fb69ff5698fe0c9d9b7813f619d4802bb8713808a715639bfad50a7c359228b5ea02f0e776183adc93f9309576f8f215a58b68198c3b2af16bf095fd13f1204b34699addfe0882b52227f3e44f8a74519076e4c968b489f299964bc1d6dba1408f7e78635184ef614ddeaa44f02575c58f22990f48b3146b7f1c130323a66228ec363894b41ffbd81dd8fbf95171a513dfc014e017a31d9e5767fccf7cd2c1b14cd39a2e6feed4311579809dea3efccc374600745e9fd60dbf75e4b195f8d6342276cb7900bea531d0d71ff1ff9c307898614b22c355d9c362e66d4cdcf10f2fcd0c25b8f642e8dd50aa6c30eb40c6944a869f705f0e61bb3fa9d28323889794a45870d3aa848e889b7fbe010527c786b87f9686f9b29402612bdcfd4f10f53161bbd5cd601f46112e5f92907636bb2aeafc647baec193d958e6ed16a1741d97d9737f13cc9102101b225758829495a3aab6c3d4d6d8dadde2f3171823494b737c808390a5b3bfcfd3ebfe071f4a4c4f6673c0f0f8fe1d444a6e757ea6a9d4e4000000000000000000000000000000000000000000001425303a
Verified : true
Caution
Before you consider using Psuedo Random Number Generator which comes with this library implementation, I strongly advice you to go through include/ml_dsa/internals/rng/prng.hpp.
Note
Looking at the API documentation, in header files i.e. include/ml_dsa/ml_dsa_{44,65,87}.hpp
, can give you a good idea of how to use ML-DSA API. Note, this library doesn't expose any raw pointer -based interface, rather almost everything is wrapped under statically defined std::span
- which one can easily create from std::{array, vector}
. I opt for using statically defined std::span
-based function interfaces, because we always know, at compile-time, how many bytes the seeds/ keys/ signatures are, for various different ML-DSA instantiations. This gives much better type safety and compile-time error reporting.