Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Predictions tend to zero #2

Open
AlexMili opened this issue May 20, 2019 · 10 comments
Open

Predictions tend to zero #2

AlexMili opened this issue May 20, 2019 · 10 comments

Comments

@AlexMili
Copy link

Hi,

I tested your script with default parameters and no specific configuration but the predicted scanpaths all tend to 0.

Here is the generated file for 1 observer:

Idx, longitude, latitude, start timestamp
1, 0.34878289699554443, 0.9589308500289917, 0.0,
2, 0.29669225215911865, 0.9125264286994934, 247.83013916015625,
3, 0.2256612777709961, 0.8126437067985535, 495.3912048339844,
4, 0.144346684217453, 0.6298840641975403, 742.7520141601562,
5, 0.07867268472909927, 0.38607722520828247, 989.9747924804688,
6, 0.03853226825594902, 0.18494655191898346, 1237.1138916015625,
7, 0.01780589111149311, 0.07793145626783371, 1484.2125244140625,
8, 0.00803335476666689, 0.03312600776553154, 1731.3065185546875,
9, 0.003687845775857568, 0.015189948491752148, 1978.4261474609375,
10, 0.0017942111007869244, 0.007524003740400076, 2225.59765625,
11, 0.0009365906589664519, 0.003964598756283522, 2472.840576171875,
12, 0.0005228217341937125, 0.0022032433189451694, 2720.16796875,
13, 0.00031133301672525704, 0.001299730152823031, 2967.58544921875,
14, 0.00019891020201612264, 0.0008188027422875166, 3215.09423828125,
15, 0.0001359538728138432, 0.0005491344491019845, 3462.68994140625,
16, 9.847166802501306e-05, 0.0003882487362716347, 3710.36669921875,
17, 7.488742267014459e-05, 0.0002860023523680866, 3958.119873046875,
18, 5.927786696702242e-05, 0.00021779075905214995, 4205.9453125,
19, 4.824537973036058e-05, 0.0001705095055513084, 4453.83837890625,
20, 4.0030274249147624e-05, 0.00013643488637171686, 4701.7958984375,
21, 3.3662123314570636e-05, 0.00011114001972600818, 4949.8134765625,
22, 2.8576745535247028e-05, 9.18341102078557e-05, 5197.88818359375,
23, 2.4390950784436427e-05, 7.665887824259698e-05, 5446.0166015625,
24, 2.0838222553720698e-05, 6.43888270133175e-05, 5694.19677734375,
25, 1.7792901417124085e-05, 5.4311683925334364e-05, 5942.42578125,
26, 1.5233459635055624e-05, 4.610263567883521e-05, 6190.7001953125,
27, 1.3146351193427108e-05, 3.955434658564627e-05, 6439.0166015625,
28, 1.1480399734864477e-05, 3.4381653676973656e-05, 6687.37109375,
29, 1.0147859939024784e-05, 3.0248620532802306e-05, 6935.76171875,
30, 9.053159374161623e-06, 2.6849664209294133e-05, 7184.185546875,
31, 8.118025107251015e-06, 2.393318573012948e-05, 7432.642578125,
32, 7.294305760296993e-06, 2.1363421183195896e-05, 7681.1328125,
33, 6.554642368428176e-06, 1.906968464027159e-05, 7929.65673828125,
34, 5.892342869628919e-06, 1.7035014025168493e-05, 8178.21484375,
35, 5.310011147230398e-06, 1.5266794434865005e-05, 8426.80859375,
36, 4.8133933887584135e-06, 1.3778957509202883e-05, 8675.435546875,
37, 4.4048711060895585e-06, 1.257122858078219e-05, 8924.09375,
38, 4.07878951591556e-06, 1.1619880751823075e-05, 9172.7802734375,
39, 3.821476639132015e-06, 1.0880620720854495e-05, 9421.4912109375,
40, 3.617363745433977e-06, 1.0304410352546256e-05, 9670.2236328125,
41, 3.4524412058090093e-06, 9.847855835687369e-06, 9918.974609375,
42, 3.3158203223138116e-06, 9.479034815740306e-06, 10167.7421875,
43, 3.200215132892481e-06, 9.172943464363925e-06, 10416.5244140625,
44, 3.101444463027292e-06, 8.911775694286916e-06, 10665.3203125,
45, 3.0155501917761285e-06, 8.686445653438568e-06, 10914.1279296875,
46, 2.940721515187761e-06, 8.490957043250091e-06, 11162.9482421875,
47, 2.8757906420651125e-06, 8.32066416478483e-06, 11411.7783203125,
48, 2.8200927317811875e-06, 8.172157322405837e-06, 11660.6171875,
49, 2.7725955078494735e-06, 8.041871296882164e-06, 11909.462890625,
50, 2.731704398684087e-06, 7.926501893962268e-06, 12158.3154296875,
51, 2.6963793970935512e-06, 7.821890903869644e-06, 12407.1708984375,
52, 2.6656191494112136e-06, 7.724168426648248e-06, 12656.0283203125,
53, 2.638428213685984e-06, 7.630750587850343e-06, 12904.88671875,
54, 2.614998948047287e-06, 7.539902071584947e-06, 13153.744140625,
55, 2.5955225737561705e-06, 7.449644272128353e-06, 13402.6005859375,
56, 2.5807157726376317e-06, 7.3622218224045355e-06, 13651.453125,
57, 2.5714023195178015e-06, 7.272059519891627e-06, 13900.302734375,
58, 2.569549224062939e-06, 7.173614903877024e-06, 14149.1494140625,
59, 2.576446831881185e-06, 7.05991396898753e-06, 14397.994140625,
60, 2.592764076325693e-06, 6.920993655512575e-06, 14646.8369140625,
61, 2.618595090098097e-06, 6.753362868039403e-06, 14895.6787109375,
62, 2.6515297122386983e-06, 6.568572644027881e-06, 15144.5205078125,
63, 2.6875611638388364e-06, 6.394213869498344e-06, 15393.365234375,

I am using:

Keras: 2.2.4
Tensorflow: 1.12.0

Do you have any idea what could possibly go wrong ?

@Cogito2012
Copy link

@AlexMili The output locations of fixations are normalized to [0, 1], as stated in the paper. However, the authors @massens neither gave the training codes nor provided the normalization parameters in the paper. maybe there's no way to decipher the predicted results?

@Tianlong-Chen
Copy link

@AlexMili @Cogito2012
Yes, I meet the same problem as yours.

Could the authors share the training codes or fix this issue with a more reliable pretrained model file? @massens

Thank you so much!

@LvJC
Copy link

LvJC commented Dec 3, 2019

@AlexMili @Cogito2012
Yes, I meet the same problem as yours.

Could the authors share the training codes or fix this issue with a more reliable pretrained model file? @massens

Thank you so much!

OMG...I thought I was wrong... This pretrained model could not even output a reasonable scanpath for its own training image. What's wrong with this project???

@sendjasni
Copy link

Hi @AlexMili,
Did you figure it out? I'm trying to use this model as part of my project and I'm also facing the same issue as you.

@AlexMili
Copy link
Author

Hello @sendjasni, unfortunately I gave up. The only way I see this is to try to retrain the model from scratch since the issue is open for more than one year now.

@sendjasni
Copy link

Hi @AlexMili
Thanks for the reply. Do you have an alternative, I really need a scan-path predictor that works on 360° images/videos?

@AlexMili
Copy link
Author

I suggest you to check the challenge this model was proposed for: Salient360. There are multiple models for video and images but I don't know if any is available on Github.

@sendjasni
Copy link

Thanks @AlexMili
I've checked them and I don't think there are any available.

@saitejamalyala
Copy link

saitejamalyala commented Dec 29, 2020

@AlexMili @sendjasni @Cogito2012 @Tianlong-Chen @LvJC @massens @amaiasalvador @xavigiro
Do you have the iSUN dataset that they have used to train the model initially ?? Also, how is EOS value added to ground truth fixations?

Trying to retrain from scratch, inputs will be appreciated. Thanks in advance

@sendjasni
Copy link

@AlexMili @sendjasni @Cogito2012 @Tianlong-Chen @LvJC @massens @amaiasalvador @xavigiro
Do you have the iSUN dataset that they have used to train the model initially ?? Also, how is EOS value added to ground truth fixations?

Trying to retrain from scratch, inputs will be appreciated. Thanks in advance

Try this :
https://salient360.ls2n.fr/datasets/

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

6 participants