-
Notifications
You must be signed in to change notification settings - Fork 116
/
1_FRLR.py
33 lines (31 loc) · 2.22 KB
/
1_FRLR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# ==============================================================================
# MIT License
#
# Copyright 2020 Institute for Automotive Engineering of RWTH Aachen University.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ==============================================================================
import numpy as np
# for dataaset 1_FRLR
H = [
np.array([[4.651574574230558e-14, 10.192351107009959, -5.36318723862984e-07], [-5.588661045867985e-07, 0.0, 2.3708767903941617], [35.30731833118676, 0.0, -1.7000018578614013]]), # front
np.array([[-5.336674306912119e-14, -10.192351107009957, 5.363187220578325e-07], [5.588660952931949e-07, 3.582264351370481e-23, 2.370876772982613], [-35.30731833118661, -2.263156574813233e-15, -0.5999981421386035]]), # rear
np.array([[20.38470221401992, 7.562206982469407e-14, -0.28867638384075833], [-3.422067857504854e-23, 2.794330463189411e-07, 2.540225111648729], [2.1619497190382224e-15, -17.65365916559334, -0.4999990710692976]]), # left
np.array([[-20.38470221401991, -4.849709834037436e-15, 0.2886763838407495], [-3.4220679184765114e-23, -2.794330512976549e-07, 2.5402251116487626], [2.161949719038217e-15, 17.653659165593304, -0.5000009289306967]]) # right
]