-
Notifications
You must be signed in to change notification settings - Fork 0
/
Config_Infer.py
112 lines (102 loc) · 3.99 KB
/
Config_Infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import torch
from multiprocessing import cpu_count
import json
class Isolate_Vocals_config:
def __init__(self):
self.input_path = 'https://www.youtube.com/watch?v=VcEDy-djQXs'
self.pretrained_model = "HP2-4BAND-3090_4band_arch-500m_1.pth"
self.convertAll = False #if input_path is start http = False / else True
self.window_size = 512
self.parameter = "Auto detect"
self.high_end_process = 'mirroring'
self.aggressiveness = '0.3'
self.postprocess = False
self.threshold = 0.2
self.nn_architecture = 'Auto detect'
self.gpu = torch.cuda.is_available()
self.deepExtraction = False
self.isVocal = False
self.suppress = True
self.output_image = False
self.tta = True
self.useCustomArguments = False
self.CustomArguments = "-h"
self.download = False
self.export_as_mp3 = False
self.data_augmentation_speedup = True
self.data_augmentation_slowdown = True
class Inference_config:
def __init__(self):
with open("/root/DeepVoice/Common_Config.json", "r") as f:
data = json.load(f)
self.device = "cuda:0" if torch.cuda.is_available() else 'cpu'
self.is_half = True
self.n_cpu = 0
self.gpu_name = None
self.gpu_mem = None
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
self.experiment_name = data['experiment_name']
self.text_prompt = data['text_prompt']
def device_config(self) -> tuple:
if torch.cuda.is_available():
i_device = int(self.device.split(":")[-1])
self.gpu_name = torch.cuda.get_device_name(i_device)
if (
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
or "P40" in self.gpu_name.upper()
or "1060" in self.gpu_name
or "1070" in self.gpu_name
or "1080" in self.gpu_name
):
print("16系/10系显卡和P40强制单精度")
self.is_half = False
for config_file in ["32k.json", "40k.json", "48k.json"]:
with open(f"configs/{config_file}", "r") as f:
strr = f.read().replace("true", "false")
with open(f"configs/{config_file}", "w") as f:
f.write(strr)
with open("trainset_preprocess_pipeline_print.py", "r") as f:
strr = f.read().replace("3.7", "3.0")
with open("trainset_preprocess_pipeline_print.py", "w") as f:
f.write(strr)
else:
self.gpu_name = None
self.gpu_mem = int(
torch.cuda.get_device_properties(i_device).total_memory
/ 1024
/ 1024
/ 1024
+ 0.4
)
if self.gpu_mem <= 4:
with open("trainset_preprocess_pipeline_print.py", "r") as f:
strr = f.read().replace("3.7", "3.0")
with open("trainset_preprocess_pipeline_print.py", "w") as f:
f.write(strr)
elif torch.backends.mps.is_available():
print("没有发现支持的N卡, 使用MPS进行推理")
self.device = "mps"
else:
print("没有发现支持的N卡, 使用CPU进行推理")
self.device = "cpu"
self.is_half = True
if self.n_cpu == 0:
self.n_cpu = cpu_count()
if self.is_half:
# 6G显存配置
x_pad = 3
x_query = 10
x_center = 60
x_max = 65
else:
# 5G显存配置
x_pad = 1
x_query = 6
x_center = 38
x_max = 41
if self.gpu_mem != None and self.gpu_mem <= 4:
x_pad = 1
x_query = 5
x_center = 30
x_max = 32
return x_pad, x_query, x_center, x_max