-
Notifications
You must be signed in to change notification settings - Fork 3
/
poster.tex
398 lines (358 loc) · 13.6 KB
/
poster.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
\documentclass[table]{beamer}
% Note: A2 is too small. A1 or portrait-A0 would be better.
\title{Using the internal language of toposes in algebraic geometry}
\author{Ingo Blechschmidt}
\institute{University of Augsburg}
\date{June 23th, 2014}
\usepackage[english]{babel}
\usepackage[protrusion=true,expansion=true]{microtype}
\usepackage{amsmath,amsfonts,amssymb,amsthm}
\usepackage{tikz}
\usepackage{booktabs}
\usepackage{ragged2e}
\usepackage[orientation=landscape,size=a2,scale=0.8]{beamerposter}
\usefonttheme{professionalfonts}
\usepackage{pxfonts}
\definecolor{lgreen} {RGB}{180,210,100}
\definecolor{dblue} {RGB}{20,66,129}
\definecolor{ddblue} {RGB}{11,36,69}
\definecolor{lred} {RGB}{220,0,0}
\definecolor{nred} {RGB}{224,0,0}
\definecolor{norange}{RGB}{230,120,20}
\definecolor{nyellow}{RGB}{255,221,0}
\definecolor{ngreen} {RGB}{98,158,31}
\definecolor{dgreen} {RGB}{78,138,21}
\definecolor{nblue} {RGB}{28,130,185}
\definecolor{jblue} {RGB}{20,50,100}
\setbeamercolor{palette primary} {fg=black,bg=white}
\setbeamercolor{palette secondary} {fg=black,bg=white}
\setbeamercolor{palette tertiary} {bg=jblue,fg=white}
\setbeamercolor{palette quaternary}{fg=black,bg=white}
\setbeamercolor{structure}{fg=jblue}
\setbeamercolor{titlelike} {bg=jblue,fg=white}
\setbeamercolor{frametitle} {bg=jblue!10,fg=jblue}
\setbeamercolor{cboxb}{fg=black,bg=jblue}
\setbeamercolor{cboxr}{fg=black,bg=red}
\setbeamercolor{item}{fg=ngreen}
\setbeamercolor{item projected}{fg=white,bg=ngreen}
\setbeamercolor{block title}{fg=nred,bg=white}
\setbeamercolor{block body}{fg=black,bg=white}
\setbeamercolor{block alerted title}{fg=white,bg=jblue}
\setbeamercolor{block alerted body}{fg=black,bg=jblue!10}
\setbeamerfont{section in head/foot}{series=\bfseries}
\setbeamerfont{block title}{series=\bfseries}
\setbeamerfont{block alerted title}{series=\bfseries}
\setbeamerfont{frametitle}{series=\bfseries}
\setbeamerfont{frametitle}{size=\Large}
\setbeamerfont{block body}{series=\rmfamily}
\setbeamertemplate{items}[circle]
\setbeamertemplate{blocks}[width=0.0]
\beamertemplatenavigationsymbolsempty
\makeatletter
\newenvironment{beamercolorboxA}[2][]{%
\begingroup%
\def\beamer@colbox@coladd{0pt}%
\def\beamer@vmode{\leavevmode}%
\setkeys{beamercolbox}{%
wd=\textwidth,ht={},dp={},%
leftskip=0pt,rightskip=0pt plus1fil,%
sep=0pt,colsep=0pt,colsep*=0pt,%
shadow=false,rounded=false,ignorebg=false}%
\setkeys{beamercolbox}{#1}%
\ifbeamercolorempty[bg]{#2}{\@tempswafalse}{\@tempswatrue}%
\ifbeamer@colbox@ignorebg\@tempswafalse\fi%
\def\beamer@colbox@color{#2}%
\hsize=\beamer@colbox@wd%
\setbox\beamer@tempbox=\hbox\bgroup\vbox\bgroup%
\leftskip=\beamer@colbox@ls%
\advance\leftskip by\beamer@colbox@sep%
\rightskip=\beamer@colbox@rs%
\advance\rightskip by\beamer@colbox@sep%
\ifbeamer@colbox@ignorebg%
\colorlet{beamer@temp@color}{bg}%
\usebeamercolor[fg]{#2}%
\colorlet{bg}{beamer@temp@color}%
\else%
\usebeamercolor[fg]{#2}%
\fi%
\if@tempswa%
\advance\leftskip by\beamer@colbox@colsep%
\advance\rightskip by\beamer@colbox@colsep%
\ifdim\beamer@colbox@colsep=0pt\else\vskip\beamer@colbox@colsep\fi%
\ifdim\beamer@colbox@colseps=0pt\else\vskip\beamer@colbox@colseps\fi%
\fi%
\ifdim\beamer@colbox@sep=0pt\else\vskip-0.3cm\fi%
\beamer@vmode\ignorespaces}{%
\ifdim\beamer@colbox@sep=0pt\else\vskip\beamer@colbox@sep\fi%
\if@tempswa\ifdim\beamer@colbox@colsep=0pt\else\vskip\beamer@colbox@colsep\fi\fi%
\if@tempswa\ifdim\beamer@colbox@colseps=0pt\else\vskip\beamer@colbox@colseps\fi\fi%
\egroup\egroup%
\wd\beamer@tempbox=\hsize%
\@tempdima=\wd\beamer@tempbox%
\ifx\beamer@colbox@ht\@empty%
\else%
\ht\beamer@tempbox=\beamer@colbox@ht%
\fi%
\ifx\beamer@colbox@dp\@empty%
\else%
\dp\beamer@tempbox=\beamer@colbox@dp%
\fi%
\ifbeamer@colbox@rounded%
\if@tempswa%
\begin{beamerboxesrounded}[%
shadow=\beamer@colbox@shadow,%
lower=\beamer@colbox@color,%
upper=normal text,%
width=\beamer@colbox@wd]{}%
\box\beamer@tempbox%
\end{beamerboxesrounded}%
\else%
\ifdim\@tempdima>\textwidth%
\setbox\beamer@tempbox=\hbox to\textwidth{\hss\box\beamer@tempbox\hss}%
\fi%
\box\beamer@tempbox%
\fi%
\else%
\if@tempswa\setbox\beamer@tempbox=\hbox{\vbox{%
\usebeamercolor{\beamer@colbox@color}%
\advance\hsize by \beamer@colbox@colseps\relax%
\advance\hsize by \beamer@colbox@colseps\relax%
\hskip-\beamer@colbox@colseps%
\fboxsep=0pt\colorbox{bg}{%
\hskip\beamer@colbox@colseps%
\hbox{\box\beamer@tempbox}%
\hskip\beamer@colbox@colseps%
}%
\hskip-\beamer@colbox@colseps%
}}\fi%
\ifdim\@tempdima>\textwidth%
\setbox\beamer@tempbox=\hbox to\textwidth{\hskip0pt minus\beamer@leftmargin\relax\box\beamer@tempbox\hskip0pt minus\beamer@rightmargin\relax}%
\fi%
\box\beamer@tempbox%
\fi%
\endgroup%
}
\makeatother
\setbeamertemplate{block begin}
{
\par\vskip\medskipamount
\begin{beamercolorbox}[colsep*=0ex,dp={2ex},center]{block title}
\vskip-0.25cm
\usebeamerfont{block title}\large\insertblocktitle
\begin{flushleft}
\vskip-0.8em
\begin{tikzpicture}[remember picture,overlay]
\shade [inner color=gray,outer color=white]
(0,0) rectangle (\textwidth,0.3cm);
\end{tikzpicture}
\end{flushleft}
\end{beamercolorbox}
{\parskip0pt\par}
\ifbeamercolorempty[bg]{block title}
{}
{\ifbeamercolorempty[bg]{block body}{}{\nointerlineskip\vskip-0.5pt}}
\usebeamerfont{block body}
\vskip-0.5cm
\begin{beamercolorbox}[colsep*=0ex,vmode]{block body}
\justifying
}
\setbeamertemplate{block end}
{
\end{beamercolorbox}
\vskip\smallskipamount
}
\newlength{\inboxwd}
\newlength{\iinboxwd}
\setbeamertemplate{block alerted begin}
{
\par\vskip\medskipamount
\begin{beamercolorbox}[sep=0ex,rounded=true,center,dp={2.0ex}]{block alerted title}
\vskip-0.2cm
\usebeamerfont{block title}\large\insertblocktitle
\vskip0.05cm
\end{beamercolorbox}
{\parskip0pt\par}
\usebeamerfont{block body}
\vskip-0.5cm
\begin{beamercolorboxA}[sep=0.5cm, rounded=true,center]{block alerted title}
\setlength{\inboxwd}{\linewidth}
\addtolength{\inboxwd}{-1cm}
\begin{beamercolorbox}[rounded=true,wd={\inboxwd},center]{block alerted body}
\setlength{\iinboxwd}{\inboxwd}
\addtolength{\iinboxwd}{-0.5cm}
\begin{center}
\begin{minipage}{\iinboxwd}
\justifying
}
\setbeamertemplate{block alerted end}
{
\end{minipage}
\end{center}
\end{beamercolorbox}
\end{beamercolorboxA}
\vskip\smallskipamount
}
\setbeamertemplate{headline}{
\leavevmode
\begin{columns}
\begin{column}{\linewidth}
\vskip1cm
\centering
\usebeamercolor{title in headline}{\color{jblue}\huge{\textbf{\inserttitle}}\\[0.5ex]}
\usebeamercolor{author in headline}{\color{fg}\large{\insertauthor}, }
\usebeamercolor{institute in headline}{\color{fg}\large{\insertinstitute}\\[1ex]}
\vskip1cm
\end{column}
\vspace{1cm}
\end{columns}
%\hspace{0.5in}\begin{beamercolorbox}[wd=\linewidth,colsep=0.15cm]{cboxb}\end{beamercolorbox}
%\vspace{0.1in}
}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\G}{\mathcal{G}}
\renewcommand{\H}{\mathcal{H}}
\renewcommand{\O}{\mathcal{O}}
\newcommand{\K}{\mathcal{K}}
\newcommand{\Sh}{\mathrm{Sh}}
\begin{document}
\begin{frame}[t]\begin{columns}[t]
\begin{column}{0.3\textwidth}
\begin{alertblock}{Summary}
With the internal language of toposes, we can
\begin{itemize}\justifying
\item express sheaf-theoretic
concepts in a simple, ele\-ment-ba\-sed language and thus understand them
in a more conceptual way,
\item mechanically obtain
corresponding sheaf-theo\-re\-tic theorems for any (intuitionistic) theorem of
linear and commutative algebra, and
\item understand which properties spread from
points to neighbourhoods.
\end{itemize}
\end{alertblock}
\bigskip
\begin{block}{What is a topos?}
A \emph{topos} is a category which has finite limits, is cartesian closed and
has a subobject classifier. Intuitively, a topos is a category which has
similar properties to the category of sets.\medskip
Important examples of toposes are
the category of sets and
the category of sheaves on a topological space.
\end{block}
\bigskip
\begin{block}{What is the internal language?}
The internal language of a topos~$\E$ allows us to
%{\addtocounter{enumi}{1}\usebeamertemplate{enumerate item}}
construct objects and morphisms of the topos,
%{\addtocounter{enumi}{1}\usebeamertemplate{enumerate item}}
formulate statements about them, and
%{\addtocounter{enumi}{1}\usebeamertemplate{enumerate item}}
prove such statements
in a \emph{naive element-based} language.
The translation of internal statements and proofs into external ones is
facilitated by an easy mechanical procedure, the \emph{Kripke--Joyal
semantics}.
\emph{Special case:} The language of the topos of sets is the usual
formal mathematical language.
% Note: The singular is probably better.
\begin{center}
\begin{tabular}{ll}
\toprule
external point of view & internal point of view \\
\midrule
objects of~$\E$ & sets \\
morphisms of~$\E$ & maps of sets \\
monomorphisms in~$\E$ & injective maps \\
epimorphisms in~$\E$ & surjective maps \\
\bottomrule
\end{tabular}
\end{center}
\end{block}
\vspace{0.7cm}
\textbf{GAeL XXII, Trieste, 2014}
\end{column}
\begin{column}{0.3\textwidth}
\begin{block}{The small Zariski topos}
Let~$X$ be a scheme. Let~$\Sh(X)$ be the small Zariski topos, i.\,e.\@ the
topos of set-valued sheaves on~$X$. From the point of view of~$\Sh(X)$,
the structure sheaf~$\O_X$ looks like an \emph{ordinary ring} (instead of a
sheaf of rings), and sheaves of~$\O_X$-modules look like \emph{ordinary
modules} on that ring.\bigskip
\rotatebox{90}{\tiny Illustration: Carina Willbold}\hspace{-0.25cm}%
\includegraphics[width=\columnwidth]{images/external-internal}
\end{block}
\bigskip
\begin{block}{Basic example}
Let~$0 \to \F' \to \F \to \F'' \to 0$ be a short exact sequence of sheaves
of~$\O_X$-modules. It is well-known that if~$\F'$ and~$\F''$ are of finite type,
then~$\F$ is as well.\medskip
A sheaf is of finite type if and only if, internally, it is a
finitely generated module. Therefore the proposition follows
\emph{immediately}
by interpreting the analogous statement of linear algebra
in the little Zariski topos:
Let~$0 \to M' \to M \to M'' \to 0$ be a short exact sequence of modules.
If~$M'$ and~$M''$ are finitely generated, so is~$M$.\medskip
We can thus recognize notions and statements of scheme theory as notions and
statements of non-sheafy linear algebra.
\emph{Caveat:} Non-intuitionistic proofs by contradiction can not be interpreted with the
internal language.
\end{block}
\end{column}
\begin{column}{0.3\textwidth}
\begin{block}{Locally free sheaves}
Let~$X$ be a reduced scheme. The structure sheaf~$\O_X$ looks like a \emph{field} from the
internal point of view. Recall that neither the rings of
local sections nor the stalks are fields.\medskip
Let~$\F$ be a finite type sheaf of~$\O_X$-modules.
Then it is well-known that~$\F$ is locally free on a dense open subset
of~$X$. (Important hard exercise in Ravi Vakil's notes.) \medskip
This is an \emph{immediate} application of the following easy lemma of intuitionistic
linear algebra: Let~$M$ be a finitely generated vector space. Then~$M$ is
\emph{not not} finite free.
\end{block}
\bigskip
\begin{block}{Rational functions}
The sheaf~$\K_X$ of rational functions can internally simply be defined as
the total quotient ring of~$\O_X$.
\end{block}
\bigskip
\begin{block}{Spreading of properties}
The following metatheorem covers a wide range of cases:
Let~$\varphi$ be a property which can be formulated without
using~$\Rightarrow$,~$\neg$,~$\forall$. Then~$\varphi$
holds at a point if and only if it holds on some open neighbourhood of the
point.\medskip
For instance, a sheaf of modules~$\F$ is zero if and only if, from the
internal perspective, ``$\forall x \in \F{:}\ x = 0$''. Because of
the~``$\forall$'', a stalk may be zero without the sheaf being zero on a
neighbourhood.\medskip
But if~$\F$ is of finite type, the condition can be reformulated using
generators as ``$x_1 = 0 \wedge \cdots \wedge x_n = 0$''. The metatheorem
is applicable to this statement and thus a stalk is zero if and only if~$\F$
is zero on a neighbourhood.
\end{block}
\vspace{1cm}
\begin{alertblock}{Dictionary of external vs. internal notions}
Expository notes are available at \url{http://tiny.cc/topos} (work in
progress).
\end{alertblock}
\tiny\rmfamily\justifying
Contents:
Tensor product of sheaves $=$ internal ordinary tensor product,
quasicoherent sheaves $=$ internal ordinary modules satisfying an interesting
condition,
internal Cartier divisors,
more metatheorems about spreading of properties,
pullback along immersions $=$ internal sheafification,
relative spectrum $=$ internal spectrum,
scheme dimension $=$ internal Krull dimension of~$\O_X$,
dense $=$ not not,
modal operators,
other toposes,
group schemes $=$ groups,
\ldots
\end{column}
\end{columns}\end{frame}
\end{document}