-
Notifications
You must be signed in to change notification settings - Fork 3
/
kripke-joyal-semantics.tex
136 lines (128 loc) · 4.67 KB
/
kripke-joyal-semantics.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
\documentclass[12pt,landscape]{scrartcl}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsmath,amsthm,amssymb,stmaryrd,color,graphicx,multirow}
\usepackage{setspace}
\usepackage{bussproofs}
\usepackage{xspace}
\usepackage{longtable}
\usepackage{booktabs}
\usepackage{array}
\usepackage[protrusion=true,expansion=true]{microtype}
\usepackage[bookmarksdepth=2,pdfencoding=auto]{hyperref}
\usepackage[all]{xy}
\usepackage{geometry}
\geometry{tmargin=1cm,bmargin=1cm,lmargin=1cm,rmargin=1cm}
\usepackage{tikz}
\usetikzlibrary{calc,shapes.callouts,shapes.arrows}
\newcommand{\hcancel}[5]{%
\tikz[baseline=(tocancel.base)]{
\node[inner sep=0pt,outer sep=0pt] (tocancel) {#1};
\draw[red, line width=0.3mm] ($(tocancel.south west)+(#2,#3)$) -- ($(tocancel.north east)+(#4,#5)$);
}%
}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\FF}{\mathbb{F}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\A}{\mathcal{A}}
\renewcommand{\C}{\mathcal{C}}
\newcommand{\D}{\mathcal{D}}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\renewcommand{\G}{\mathcal{G}}
\renewcommand{\H}{\mathcal{H}}
\renewcommand{\O}{\mathcal{O}}
\newcommand{\K}{\mathcal{K}}
\newcommand{\N}{\mathcal{N}}
\newcommand{\M}{\mathcal{M}}
\renewcommand{\L}{\mathcal{L}}
\renewcommand{\P}{\mathcal{P}}
\newcommand{\R}{\mathcal{R}}
\newcommand{\I}{\mathcal{I}}
\renewcommand{\S}{\mathcal{S}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\GG}{\mathbb{G}}
\newcommand{\aaa}{\mathfrak{a}}
\newcommand{\ppp}{\mathfrak{p}}
\newcommand{\mmm}{\mathfrak{m}}
\newcommand{\nnn}{\mathfrak{n}}
\newcommand{\Hom}{\mathrm{Hom}}
\newcommand{\HOM}{\mathcal{H}\mathrm{om}}
\newcommand{\id}{\mathrm{id}}
\newcommand{\GL}{\mathrm{GL}}
\newcommand{\placeholder}{\underline{\quad}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\Set}{\mathrm{Set}}
\newcommand{\Grp}{\mathrm{Grp}}
\newcommand{\Vect}{\mathrm{Vect}}
\newcommand{\Sh}{\mathrm{Sh}}
\newcommand{\PSh}{\mathrm{PSh}}
\newcommand{\Zar}{\mathrm{Zar}}
\newcommand{\Sch}{\mathrm{Sch}}
\newcommand{\Mod}{\mathrm{Mod}}
\newcommand{\Alg}{\mathrm{Alg}}
\newcommand{\Ring}{\mathrm{Ring}}
\newcommand{\LRL}{\mathrm{LRL}}
\newcommand{\pt}{\mathrm{pt}}
\newcommand{\tors}{\mathrm{tors}}
\DeclareMathOperator{\Spec}{Spec}
\newcommand{\QcohSpec}[2]{\mathrm{Spec}^{\mathrm{qcoh}}_{#1}{#2}}
\newcommand{\RelSpec}[2]{\mathrm{RelSpec}_{#1}{#2}}
\newcommand{\op}{\mathrm{op}}
\DeclareMathOperator{\colim}{colim}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\Ann}{Ann}
\DeclareMathOperator{\Int}{int}
\DeclareMathOperator{\Clos}{cl}
\DeclareMathOperator{\Kernel}{ker}
\DeclareMathOperator{\supp}{supp}
\newcommand{\Ass}{\mathrm{Ass}}
\newcommand{\Open}{\mathrm{Op}}
\newcommand{\?}{\,{:}\,}
\renewcommand{\_}{\mathpunct{.}\,}
\newcommand{\speak}[1]{\ulcorner\text{\textnormal{#1}}\urcorner}
\newcommand{\Ll}{:\Longleftrightarrow}
\newcommand{\notat}[1]{{!#1}}
\newcommand{\lra}{\longrightarrow}
\newcommand{\lhra}{\ensuremath{\lhook\joinrel\relbar\joinrel\rightarrow}}
\newcommand{\hra}{\hookrightarrow}
\newcommand{\brak}[1]{{\llbracket{#1}\rrbracket}}
\newcommand{\ie}{i.\,e.\@\xspace}
\newcommand{\eg}{e.\,g.\@\xspace}
\newcommand{\notnot}{\emph{not not}\xspace}
\definecolor{gray}{rgb}{0.7,0.7,0.7}
\begin{document}
\thispagestyle{empty}
\begin{table}
\Large
\centering
\[ \renewcommand{\arraystretch}{1.7}\begin{array}{@{}lcl@{}}
U \models s = t \? \F &\Ll& s|_U = t|_U \in \Gamma(U, \F) \\
U \models \top &\Ll& U = U \text{ (always fulfilled)} \\
U \models \bot &\Ll& U = \emptyset \\
U \models \varphi \wedge \psi &\Ll&
\text{$U \models \varphi$ and $U \models \psi$} \\
U \models \varphi \vee \psi &\Ll&
\hcancel{\text{$U \models \varphi$ or $U \models \psi$}}{0pt}{3pt}{0pt}{-2pt} \\
&& \text{there exists a covering $U = \bigcup_i U_i$ such that for all~$i$:} \\
&& \quad\quad \text{$U_i \models \varphi$ or $U_i \models \psi$} \\
U \models \varphi \Rightarrow \psi &\Ll&
\text{for all open~$V \subseteq U$:
$V \models \varphi$ implies $V \models \psi$} \\
U \models \forall s \? \F\_ \varphi(s) &\Ll&
\text{for all sections~$s \in \Gamma(V, \F)$, open $V \subseteq U$: $V \models
\varphi(s)$} \\
U \models \exists s \? \F\_ \varphi(s) &\Ll&
\hcancel{\text{there exists a section~$s \in \Gamma(U,\F)$ such that $U
\models \varphi(s)$}}{0pt}{3pt}{0pt}{-2pt} \\
&&
\text{there exists an open covering $U = \bigcup_i U_i$ such that for all~$i$:} \\
&& \quad\quad \text{there exists~$s_i \in \Gamma(U_i, \F)$ such that
$U_i \models \varphi(s_i)$}
\end{array} \]
\caption{\label{table:kripke-joyal}The Kripke--Joyal semantics of a sheaf
topos.}
\end{table}
\end{document}