forked from jantic/DeOldify
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
123 lines (94 loc) · 3.29 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# import the necessary packages
import os
import sys
import requests
import ssl
from flask import Flask
from flask import request
from flask import jsonify
from flask import send_file
from app_utils import download
from app_utils import generate_random_filename
from app_utils import clean_me
from app_utils import clean_all
from app_utils import create_directory
from app_utils import get_model_bin
from app_utils import convertToJPG
from os import path
import torch
import fastai
from deoldify.visualize import *
from pathlib import Path
import traceback
# Handle switch between GPU and CPU
if torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
else:
del os.environ["CUDA_VISIBLE_DEVICES"]
app = Flask(__name__)
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
# define a predict function as an endpoint
@app.route("/process", methods=["POST"])
def process_image():
input_path = generate_random_filename(upload_directory,"jpeg")
output_path = os.path.join(results_img_directory, os.path.basename(input_path))
try:
if 'file' in request.files:
file = request.files['file']
if allowed_file(file.filename):
file.save(input_path)
try:
render_factor = request.form.getlist('render_factor')[0]
except:
render_factor = 30
else:
url = request.json["url"]
download(url, input_path)
try:
render_factor = request.json["render_factor"]
except:
render_factor = 30
result = None
try:
result = image_colorizer.get_transformed_image(input_path, render_factor=render_factor, post_process=True, watermarked=True)
except:
convertToJPG(input_path)
result = image_colorizer.get_transformed_image(input_path, render_factor=render_factor, post_process=True, watermarked=True)
finally:
if result is not None:
result.save(output_path, quality=95)
result.close()
callback = send_file(output_path, mimetype='image/jpeg')
return callback, 200
except:
traceback.print_exc()
return {'message': 'input error'}, 400
finally:
pass
clean_all([
input_path,
output_path
])
if __name__ == '__main__':
global upload_directory
global results_img_directory
global image_colorizer
global ALLOWED_EXTENSIONS
ALLOWED_EXTENSIONS = set(['png', 'jpg', 'jpeg'])
upload_directory = '/data/upload/'
create_directory(upload_directory)
results_img_directory = '/data/result_images/'
create_directory(results_img_directory)
model_directory = '/data/models/'
create_directory(model_directory)
artistic_model_url = "https://data.deepai.org/deoldify/ColorizeArtistic_gen.pth"
# only get the model binay if it not present in /data/models
get_model_bin(
artistic_model_url, os.path.join(model_directory, "ColorizeArtistic_gen.pth")
)
image_colorizer = get_image_colorizer(artistic=True)
port = 5000
host = "0.0.0.0"
app.run(host=host, port=port, threaded=False)