-
Notifications
You must be signed in to change notification settings - Fork 0
/
camera.py
83 lines (67 loc) · 2.93 KB
/
camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import cv2
import numpy as np
net = cv2.dnn.readNet('yolov4-custom.cfg', 'yolov4.weights')
with open("coco.names", "r") as f:
classes = f.read().splitlines()
font = cv2.FONT_HERSHEY_PLAIN
colors = np.random.uniform(0, 255, size=(len(classes), 3))
class VideoLive(object):
def __init__(self):
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
self.cap=cv2.VideoCapture(0)
def __del__(self):
self.cap.release()
def get_frame(self):
_, img = self.cap.read()
height, width, _ = img.shape
blob = cv2.dnn.blobFromImage(img, 1 / 255, (416, 416), (0, 0, 0), swapRB=True, crop=False)
net.setInput(blob)
output_layers_names = net.getUnconnectedOutLayersNames()
layeroutputs = net.forward(output_layers_names)
boxes = []
confidences = []
class_ids = []
for output in layeroutputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append((float(confidence)))
class_ids.append(class_id)
# it will remove the duplicate detections in our detection
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.2, 0.4)
if len(indexes) > 0:
for i in indexes.flatten():
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
confidence = str(round(confidences[i], 2))
color = colors[i]
cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
cv2.putText(img, label + " " + confidence, (x, y + 20), font, 2, (255, 0, 0), 2)
_, jpeg = cv2.imencode('.jpg', img)
return jpeg.tobytes()
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
scale_factor = 1.3
class Face(object):
def __init__(self):
self.cap=cv2.VideoCapture(0)
def __del__(self):
self.cap.release()
def get_face(self):
_, img = self.cap.read()
faces = face_cascade.detectMultiScale(img, scale_factor, 5)
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img, 'FACE', (x, y), font, 2, (0, 0, 255), 2, cv2.LINE_AA)
_, jpeg = cv2.imencode('.jpeg', img)
return jpeg.tobytes()