-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
KthSmallestElementInABst.cpp
74 lines (61 loc) · 2.17 KB
/
KthSmallestElementInABst.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
// Source : https://leetcode.com/problems/kth-smallest-element-in-a-bst/
// Author : Hao Chen
// Date : 2015-07-03
/**********************************************************************************
*
* Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
*
* Note:
* You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
*
* Follow up:
* What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently?
* How would you optimize the kthSmallest routine?
*
* Try to utilize the property of a BST.
* What if you could modify the BST node's structure?
* The optimal runtime complexity is O(height of BST).
*
* Credits:Special thanks to @ts for adding this problem and creating all test cases.
**********************************************************************************/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
// in-order travel - recursive way
int kthSmallestHelper_recursive(TreeNode* root, int& k) {
if (root==NULL) return 0; //this behavior is undefined!
//in-order travel
int result = kthSmallestHelper_recursive(root->left, k);
if (k==0) return result;
k--;
if (k==0) return root->val;
return kthSmallestHelper_recursive(root->right, k);
}
// in-order travel - non-recursive way
int kthSmallestHelper_nonRecursive(TreeNode* root, int k){
stack<TreeNode*> s;
while(!s.empty() || root){
while (root) {
s.push(root);
root = root->left;
}
k--;
root = s.top()->right;
if (k==0) return s.top()->val;
s.pop();
}
return -1;
}
int kthSmallest(TreeNode* root, int k) {
//return kthSmallestHelper_nonRecursive(root, k);
return kthSmallestHelper_recursive(root, k);
}
};