-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
3Sum.cpp
189 lines (167 loc) · 5.21 KB
/
3Sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
// Source : https://oj.leetcode.com/problems/3sum/
// Author : Hao Chen
// Date : 2014-07-22
/**********************************************************************************
*
* Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0?
* Find all unique triplets in the array which gives the sum of zero.
*
* Note:
*
* Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
* The solution set must not contain duplicate triplets.
*
* For example, given array S = {-1 0 1 2 -1 -4},
*
* A solution set is:
* (-1, 0, 1)
* (-1, -1, 2)
*
*
**********************************************************************************/
#include <stdio.h>
#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;
/*
* Similar like "Two Number" problem, we can have the simlar solution.
*
* Suppose the input array is S[0..n-1], 3SUM can be solved in O(n^2) time on average by
* inserting each number S[i] into a hash table, and then for each index i and j,
* checking whether the hash table contains the integer - (s[i]+s[j])
*
* Alternatively, the algorithm below first sorts the input array and then tests all
* possible pairs in a careful order that avoids the need to binary search for the pairs
* in the sorted list, achieving worst-case O(n^n)
*
* Solution: Quadratic algorithm
* http://en.wikipedia.org/wiki/3SUM
*
*/
vector<vector<int> > threeSum(vector<int> &num) {
vector< vector<int> > result;
if(num.size() == 0 || num.size() == 1 || num.size() == 2) return result;
//sort the array, this is the key
sort(num.begin(), num.end());
int n = num.size();
for (int i=0; i<n-2; i++) {
//skip the duplication
if (i > 0 && num[i - 1] == num[i]) continue;
int a = num[i];
int low = i + 1;
int high = n - 1;
while (low < high) {
int b = num[low];
int c = num[high];
if (a + b + c == 0) {
//got the soultion
vector<int> v;
v.push_back(a);
v.push_back(b);
v.push_back(c);
result.push_back(v);
// Continue search for all triplet combinations summing to zero.
//skip the duplication
while(low < n - 1 && num[low] == num[low + 1]) low++;
while(high > 0 && num[high] == num[high - 1]) high--;
low++;
high--;
} else if (a+b+c > 0) {
//skip the duplication
while(high > 0 && num[high] == num[high - 1]) high--;
high--;
} else {
//skip the duplication
while(low < n - 1 && num[low] == num[low + 1]) low++;
low++;
}
}
}
return result;
}
//using combination method could meet <<Time Limit Exceeded>> error
vector<vector<int> > combination(vector<int> &v, int k);
bool isSumZero(vector<int>& v);
int sum(vector<int>& v);
vector<vector<int> > threeSum2(vector<int> &num) {
vector< vector<int> > result;
vector< vector<int> > r = combination(num, 3);
for (int i = 0; i < r.size(); i++) {
if (isSumZero(r[i])) {
result.push_back(r[i]);
}
}
return result;
}
bool isSumZero(vector < int>& v) {
return sum(v) == 0;
}
int sum(vector<int>& v) {
int s = 0;
for(int i = 0; i < v.size(); i++) {
s += v[i];
}
return s;
}
vector<vector<int> > combination(vector<int> &v, int k) {
vector<vector<int> > result;
vector<int> d;
int n = v.size();
for (int i = 0; i < n; i++) {
d.push_back( (i < k) ? 1 : 0 );
}
//1) from the left, find the [1,0] pattern, change it to [0,1]
//2) move all of the 1 before the pattern to the most left side
//3) check all of 1 move to the right
while(1) {
vector<int> tmp;
for(int x = 0; x < n; x++) {
if (d[x]) tmp.push_back(v[x]);
}
sort(tmp.begin(), tmp.end());
result.push_back(tmp);
//step 1), find [1,0] pattern
int i;
bool found = false;
int ones = 0;
for(i = 0; i < n - 1; i++) {
if (d[i] == 1 && d[i + 1] == 0) {
d[i] = 0; d[i + 1] = 1;
found = true;
//step 2) move all of right 1 to the most left side
for (int j = 0; j < i; j++) {
d[j] = ( ones > 0 ) ? 1 : 0;
ones--;
}
break;
}
if (d[i] == 1) ones++;
}
if (!found) {
break;
}
}
return result;
}
void printMatrix(vector<vector<int> > &matrix)
{
for(int i = 0; i < matrix.size(); i++) {
printf("{");
for(int j = 0; j < matrix[i].size(); j++) {
printf("%3d ", matrix[i][j]) ;
}
printf("}\n");
}
cout << endl;
}
int main()
{
//int a[] = { -1, 0, 1, 2, -1, 1, -4 };
int a[] = { -1, 1, 1, 1, -1, -1, 0,0,0 };
vector<int> n(a, a + sizeof(a)/sizeof(int));
vector< vector<int> > result = threeSum(n);
printMatrix(result);
return 0;
}