forked from milesburton/Arduino-Temperature-Control-Library
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DallasTemperature.cpp
754 lines (629 loc) · 21.7 KB
/
DallasTemperature.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// Version 3.7.2 modified on Dec 6, 2011 to support Arduino 1.0
// See Includes...
// Modified by Jordan Hochenbaum
#include "DallasTemperature.h"
#if ARDUINO >= 100
#include "Arduino.h"
#else
extern "C" {
#include "WConstants.h"
}
#endif
DallasTemperature::DallasTemperature(OneWire* _oneWire)
#if REQUIRESALARMS
: _AlarmHandler(&defaultAlarmHandler)
#endif
{
_wire = _oneWire;
devices = 0;
parasite = false;
bitResolution = 9;
waitForConversion = true;
checkForConversion = true;
}
// initialise the bus
void DallasTemperature::begin(void)
{
DeviceAddress deviceAddress;
_wire->reset_search();
devices = 0; // Reset the number of devices when we enumerate wire devices
while (_wire->search(deviceAddress))
{
if (validAddress(deviceAddress))
{
if (!parasite && readPowerSupply(deviceAddress)) parasite = true;
ScratchPad scratchPad;
readScratchPad(deviceAddress, scratchPad);
bitResolution = max(bitResolution, getResolution(deviceAddress));
devices++;
}
}
}
// returns the number of devices found on the bus
uint8_t DallasTemperature::getDeviceCount(void)
{
return devices;
}
// returns true if address is valid
bool DallasTemperature::validAddress(uint8_t* deviceAddress)
{
return (_wire->crc8(deviceAddress, 7) == deviceAddress[7]);
}
// finds an address at a given index on the bus
// returns true if the device was found
bool DallasTemperature::getAddress(uint8_t* deviceAddress, uint8_t index)
{
uint8_t depth = 0;
_wire->reset_search();
while (depth <= index && _wire->search(deviceAddress))
{
if (depth == index && validAddress(deviceAddress)) return true;
depth++;
}
return false;
}
// attempt to determine if the device at the given address is connected to the bus
bool DallasTemperature::isConnected(uint8_t* deviceAddress)
{
ScratchPad scratchPad;
return isConnected(deviceAddress, scratchPad);
}
// attempt to determine if the device at the given address is connected to the bus
// also allows for updating the read scratchpad
bool DallasTemperature::isConnected(uint8_t* deviceAddress, uint8_t* scratchPad)
{
readScratchPad(deviceAddress, scratchPad);
return (_wire->crc8(scratchPad, 8) == scratchPad[SCRATCHPAD_CRC]);
}
// read device's scratch pad
void DallasTemperature::readScratchPad(uint8_t* deviceAddress, uint8_t* scratchPad)
{
// send the command
_wire->reset();
_wire->select(deviceAddress);
_wire->write(READSCRATCH);
// TODO => collect all comments & use simple loop
// byte 0: temperature LSB
// byte 1: temperature MSB
// byte 2: high alarm temp
// byte 3: low alarm temp
// byte 4: DS18S20: store for crc
// DS18B20 & DS1822: configuration register
// byte 5: internal use & crc
// byte 6: DS18S20: COUNT_REMAIN
// DS18B20 & DS1822: store for crc
// byte 7: DS18S20: COUNT_PER_C
// DS18B20 & DS1822: store for crc
// byte 8: SCRATCHPAD_CRC
//
// for(int i=0; i<9; i++)
// {
// scratchPad[i] = _wire->read();
// }
// read the response
// byte 0: temperature LSB
scratchPad[TEMP_LSB] = _wire->read();
// byte 1: temperature MSB
scratchPad[TEMP_MSB] = _wire->read();
// byte 2: high alarm temp
scratchPad[HIGH_ALARM_TEMP] = _wire->read();
// byte 3: low alarm temp
scratchPad[LOW_ALARM_TEMP] = _wire->read();
// byte 4:
// DS18S20: store for crc
// DS18B20 & DS1822: configuration register
scratchPad[CONFIGURATION] = _wire->read();
// byte 5:
// internal use & crc
scratchPad[INTERNAL_BYTE] = _wire->read();
// byte 6:
// DS18S20: COUNT_REMAIN
// DS18B20 & DS1822: store for crc
scratchPad[COUNT_REMAIN] = _wire->read();
// byte 7:
// DS18S20: COUNT_PER_C
// DS18B20 & DS1822: store for crc
scratchPad[COUNT_PER_C] = _wire->read();
// byte 8:
// SCTRACHPAD_CRC
scratchPad[SCRATCHPAD_CRC] = _wire->read();
_wire->reset();
}
// writes device's scratch pad
void DallasTemperature::writeScratchPad(uint8_t* deviceAddress, const uint8_t* scratchPad)
{
_wire->reset();
_wire->select(deviceAddress);
_wire->write(WRITESCRATCH);
_wire->write(scratchPad[HIGH_ALARM_TEMP]); // high alarm temp
_wire->write(scratchPad[LOW_ALARM_TEMP]); // low alarm temp
// DS18S20 does not use the configuration register
if (deviceAddress[0] != DS18S20MODEL) _wire->write(scratchPad[CONFIGURATION]); // configuration
_wire->reset();
// save the newly written values to eeprom
_wire->write(COPYSCRATCH, parasite);
if (parasite) delay(10); // 10ms delay
_wire->reset();
}
// reads the device's power requirements
bool DallasTemperature::readPowerSupply(uint8_t* deviceAddress)
{
bool ret = false;
_wire->reset();
_wire->select(deviceAddress);
_wire->write(READPOWERSUPPLY);
if (_wire->read_bit() == 0) ret = true;
_wire->reset();
return ret;
}
// set resolution of all devices to 9, 10, 11, or 12 bits
// if new resolution is out of range, it is constrained.
void DallasTemperature::setResolution(uint8_t newResolution)
{
bitResolution = constrain(newResolution, 9, 12);
DeviceAddress deviceAddress;
for (int i=0; i<devices; i++)
{
getAddress(deviceAddress, i);
setResolution(deviceAddress, bitResolution);
}
}
// set resolution of a device to 9, 10, 11, or 12 bits
// if new resolution is out of range, 9 bits is used.
bool DallasTemperature::setResolution(uint8_t* deviceAddress, uint8_t newResolution)
{
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad))
{
// DS18S20 has a fixed 9-bit resolution
if (deviceAddress[0] != DS18S20MODEL)
{
switch (newResolution)
{
case 12:
scratchPad[CONFIGURATION] = TEMP_12_BIT;
break;
case 11:
scratchPad[CONFIGURATION] = TEMP_11_BIT;
break;
case 10:
scratchPad[CONFIGURATION] = TEMP_10_BIT;
break;
case 9:
default:
scratchPad[CONFIGURATION] = TEMP_9_BIT;
break;
}
writeScratchPad(deviceAddress, scratchPad);
}
return true; // new value set
}
return false;
}
// returns the global resolution
uint8_t DallasTemperature::getResolution()
{
return bitResolution;
}
// returns the current resolution of the device, 9-12
// returns 0 if device not found
uint8_t DallasTemperature::getResolution(uint8_t* deviceAddress)
{
// this model has a fixed resolution of 9 bits but getTemp calculates
// a full 12 bits resolution and we need 750ms convert time
if (deviceAddress[0] == DS18S20MODEL) return 12;
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad))
{
switch (scratchPad[CONFIGURATION])
{
case TEMP_12_BIT:
return 12;
case TEMP_11_BIT:
return 11;
case TEMP_10_BIT:
return 10;
case TEMP_9_BIT:
return 9;
}
}
return 0;
}
// sets the value of the waitForConversion flag
// TRUE : function requestTemperature() etc returns when conversion is ready
// FALSE: function requestTemperature() etc returns immediately (USE WITH CARE!!)
// (1) programmer has to check if the needed delay has passed
// (2) but the application can do meaningful things in that time
void DallasTemperature::setWaitForConversion(bool flag)
{
waitForConversion = flag;
}
// gets the value of the waitForConversion flag
bool DallasTemperature::getWaitForConversion()
{
return waitForConversion;
}
// sets the value of the checkForConversion flag
// TRUE : function requestTemperature() etc will 'listen' to an IC to determine whether a conversion is complete
// FALSE: function requestTemperature() etc will wait a set time (worst case scenario) for a conversion to complete
void DallasTemperature::setCheckForConversion(bool flag)
{
checkForConversion = flag;
}
// gets the value of the waitForConversion flag
bool DallasTemperature::getCheckForConversion()
{
return checkForConversion;
}
bool DallasTemperature::isConversionAvailable(uint8_t* deviceAddress)
{
// Check if the clock has been raised indicating the conversion is complete
ScratchPad scratchPad;
readScratchPad(deviceAddress, scratchPad);
return scratchPad[0];
}
// sends command for all devices on the bus to perform a temperature conversion
void DallasTemperature::requestTemperatures()
{
_wire->reset();
_wire->skip();
_wire->write(STARTCONVO, parasite);
// ASYNC mode?
if (!waitForConversion) return;
blockTillConversionComplete(&bitResolution, 0);
return;
}
// sends command for one device to perform a temperature by address
// returns FALSE if device is disconnected
// returns TRUE otherwise
bool DallasTemperature::requestTemperaturesByAddress(uint8_t* deviceAddress)
{
_wire->reset();
_wire->select(deviceAddress);
_wire->write(STARTCONVO, parasite);
// check device
ScratchPad scratchPad;
if (!isConnected(deviceAddress, scratchPad)) return false;
// ASYNC mode?
if (!waitForConversion) return true;
uint8_t bitResolution = getResolution(deviceAddress);
blockTillConversionComplete(&bitResolution, deviceAddress);
return true;
}
void DallasTemperature::blockTillConversionComplete(uint8_t* bitResolution, uint8_t* deviceAddress)
{
if(deviceAddress != 0 && checkForConversion && !parasite)
{
// Continue to check if the IC has responded with a temperature
// NB: Could cause issues with multiple devices (one device may respond faster)
unsigned long start = millis();
while(!isConversionAvailable(0) && ((millis() - start) < 750));
}
// Wait a fix number of cycles till conversion is complete (based on IC datasheet)
switch (*bitResolution)
{
case 9:
delay(94);
break;
case 10:
delay(188);
break;
case 11:
delay(375);
break;
case 12:
default:
delay(750);
break;
}
}
// sends command for one device to perform a temp conversion by index
bool DallasTemperature::requestTemperaturesByIndex(uint8_t deviceIndex)
{
DeviceAddress deviceAddress;
getAddress(deviceAddress, deviceIndex);
return requestTemperaturesByAddress(deviceAddress);
}
// Fetch temperature for device index
float DallasTemperature::getTempCByIndex(uint8_t deviceIndex)
{
DeviceAddress deviceAddress;
getAddress(deviceAddress, deviceIndex);
return getTempC((uint8_t*)deviceAddress);
}
// Fetch temperature for device index
float DallasTemperature::getTempFByIndex(uint8_t deviceIndex)
{
DeviceAddress deviceAddress;
getAddress(deviceAddress, deviceIndex);
return getTempF((uint8_t*)deviceAddress);
}
// reads scratchpad and returns the raw temperature (12bit)
int16_t DallasTemperature::calculateTemperature(uint8_t* deviceAddress, uint8_t* scratchPad)
{
int16_t rawTemperature = (((int16_t)scratchPad[TEMP_MSB]) << 8) | scratchPad[TEMP_LSB];
/* DS18S20
Resolutions greater than 9 bits can be calculated using the data from
the temperature, COUNT REMAIN and COUNT PER °C registers in the
scratchpad. Note that the COUNT PER °C register is hard-wired to 16
(10h). After reading the scratchpad, the TEMP_READ value is obtained
by truncating the 0.5°C bit (bit 0) from the temperature data. The
extended resolution temperature can then be calculated using the
following equation:
COUNT_PER_C - COUNT_REMAIN
TEMPERATURE = TEMP_READ - 0.25 + --------------------------
COUNT_PER_C
Simplified to integer arithmetic for a 12 bits value:
TEMPERATURE = ((raw & 0xFFFE) << 3) - 4 + 16 - COUNT_REMAIN
See - http://myarduinotoy.blogspot.co.uk/2013/02/12bit-result-from-ds18s20.html
*/
if (deviceAddress[0] == DS18S20MODEL)
rawTemperature = ((rawTemperature & 0xFFFE) << 3) + 12 - scratchPad[COUNT_REMAIN];
return rawTemperature;
}
// returns raw temperature in 1/16 degrees C or DEVICE_DISCONNECTED_RAW if the
// device's scratch pad cannot be read successfully.
// the numeric value of DEVICE_DISCONNECTED_RAW is defined in
// DallasTemperature.h. It is a large negative number outside the
// operating range of the device
int16_t DallasTemperature::getTemp(uint8_t* deviceAddress)
{
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad)) return calculateTemperature(deviceAddress, scratchPad);
return DEVICE_DISCONNECTED_RAW;
}
// returns temperature in degrees C or DEVICE_DISCONNECTED_C if the
// device's scratch pad cannot be read successfully.
// the numeric value of DEVICE_DISCONNECTED_C is defined in
// DallasTemperature.h. It is a large negative number outside the
// operating range of the device
float DallasTemperature::getTempC(uint8_t* deviceAddress)
{
return rawToCelsius(getTemp(deviceAddress));
}
// returns temperature in degrees F or DEVICE_DISCONNECTED_F if the
// device's scratch pad cannot be read successfully.
// the numeric value of DEVICE_DISCONNECTED_F is defined in
// DallasTemperature.h. It is a large negative number outside the
// operating range of the device
float DallasTemperature::getTempF(uint8_t* deviceAddress)
{
return rawToFahrenheit(getTemp(deviceAddress));
}
// returns true if the bus requires parasite power
bool DallasTemperature::isParasitePowerMode(void)
{
return parasite;
}
#if REQUIRESALARMS
/*
ALARMS:
TH and TL Register Format
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
S 2^6 2^5 2^4 2^3 2^2 2^1 2^0
Only bits 11 through 4 of the temperature register are used
in the TH and TL comparison since TH and TL are 8-bit
registers. If the measured temperature is lower than or equal
to TL or higher than or equal to TH, an alarm condition exists
and an alarm flag is set inside the DS18B20. This flag is
updated after every temperature measurement; therefore, if the
alarm condition goes away, the flag will be turned off after
the next temperature conversion.
*/
// sets the high alarm temperature for a device in degrees Celsius
// accepts a float, but the alarm resolution will ignore anything
// after a decimal point. valid range is -55C - 125C
void DallasTemperature::setHighAlarmTemp(uint8_t* deviceAddress, char celsius)
{
// make sure the alarm temperature is within the device's range
if (celsius > 125) celsius = 125;
else if (celsius < -55) celsius = -55;
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad))
{
scratchPad[HIGH_ALARM_TEMP] = (uint8_t)celsius;
writeScratchPad(deviceAddress, scratchPad);
}
}
// sets the low alarm temperature for a device in degrees Celsius
// accepts a float, but the alarm resolution will ignore anything
// after a decimal point. valid range is -55C - 125C
void DallasTemperature::setLowAlarmTemp(uint8_t* deviceAddress, char celsius)
{
// make sure the alarm temperature is within the device's range
if (celsius > 125) celsius = 125;
else if (celsius < -55) celsius = -55;
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad))
{
scratchPad[LOW_ALARM_TEMP] = (uint8_t)celsius;
writeScratchPad(deviceAddress, scratchPad);
}
}
// returns a char with the current high alarm temperature or
// DEVICE_DISCONNECTED for an address
char DallasTemperature::getHighAlarmTemp(uint8_t* deviceAddress)
{
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad)) return (char)scratchPad[HIGH_ALARM_TEMP];
return DEVICE_DISCONNECTED_C;
}
// returns a char with the current low alarm temperature or
// DEVICE_DISCONNECTED for an address
char DallasTemperature::getLowAlarmTemp(uint8_t* deviceAddress)
{
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad)) return (char)scratchPad[LOW_ALARM_TEMP];
return DEVICE_DISCONNECTED_C;
}
// resets internal variables used for the alarm search
void DallasTemperature::resetAlarmSearch()
{
alarmSearchJunction = -1;
alarmSearchExhausted = 0;
for(uint8_t i = 0; i < 7; i++)
alarmSearchAddress[i] = 0;
}
// This is a modified version of the OneWire::search method.
//
// Also added the OneWire search fix documented here:
// http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295
//
// Perform an alarm search. If this function returns a '1' then it has
// enumerated the next device and you may retrieve the ROM from the
// OneWire::address variable. If there are no devices, no further
// devices, or something horrible happens in the middle of the
// enumeration then a 0 is returned. If a new device is found then
// its address is copied to newAddr. Use
// DallasTemperature::resetAlarmSearch() to start over.
bool DallasTemperature::alarmSearch(uint8_t* newAddr)
{
uint8_t i;
char lastJunction = -1;
uint8_t done = 1;
if (alarmSearchExhausted) return false;
if (!_wire->reset()) return false;
// send the alarm search command
_wire->write(0xEC, 0);
for(i = 0; i < 64; i++)
{
uint8_t a = _wire->read_bit( );
uint8_t nota = _wire->read_bit( );
uint8_t ibyte = i / 8;
uint8_t ibit = 1 << (i & 7);
// I don't think this should happen, this means nothing responded, but maybe if
// something vanishes during the search it will come up.
if (a && nota) return false;
if (!a && !nota)
{
if (i == alarmSearchJunction)
{
// this is our time to decide differently, we went zero last time, go one.
a = 1;
alarmSearchJunction = lastJunction;
}
else if (i < alarmSearchJunction)
{
// take whatever we took last time, look in address
if (alarmSearchAddress[ibyte] & ibit) a = 1;
else
{
// Only 0s count as pending junctions, we've already exhausted the 0 side of 1s
a = 0;
done = 0;
lastJunction = i;
}
}
else
{
// we are blazing new tree, take the 0
a = 0;
alarmSearchJunction = i;
done = 0;
}
// OneWire search fix
// See: http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295
}
if (a) alarmSearchAddress[ibyte] |= ibit;
else alarmSearchAddress[ibyte] &= ~ibit;
_wire->write_bit(a);
}
if (done) alarmSearchExhausted = 1;
for (i = 0; i < 8; i++) newAddr[i] = alarmSearchAddress[i];
return true;
}
// returns true if device address has an alarm condition
// TODO: can this be done with only TEMP_MSB REGISTER (faster)
// if ((char) scratchPad[TEMP_MSB] <= (char) scratchPad[LOW_ALARM_TEMP]) return true;
// if ((char) scratchPad[TEMP_MSB] >= (char) scratchPad[HIGH_ALARM_TEMP]) return true;
bool DallasTemperature::hasAlarm(uint8_t* deviceAddress)
{
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad))
{
float temp = calculateTemperature(deviceAddress, scratchPad);
// check low alarm
if ((char)temp <= (char)scratchPad[LOW_ALARM_TEMP]) return true;
// check high alarm
if ((char)temp >= (char)scratchPad[HIGH_ALARM_TEMP]) return true;
}
// no alarm
return false;
}
// returns true if any device is reporting an alarm condition on the bus
bool DallasTemperature::hasAlarm(void)
{
DeviceAddress deviceAddress;
resetAlarmSearch();
return alarmSearch(deviceAddress);
}
// runs the alarm handler for all devices returned by alarmSearch()
void DallasTemperature::processAlarms(void)
{
resetAlarmSearch();
DeviceAddress alarmAddr;
while (alarmSearch(alarmAddr))
{
if (validAddress(alarmAddr))
_AlarmHandler(alarmAddr);
}
}
// sets the alarm handler
void DallasTemperature::setAlarmHandler(AlarmHandler *handler)
{
_AlarmHandler = handler;
}
// The default alarm handler
void DallasTemperature::defaultAlarmHandler(uint8_t* deviceAddress)
{
}
#endif
// Convert float Celsius to Fahrenheit
float DallasTemperature::toFahrenheit(float celsius)
{
return (celsius * 1.8) + 32;
}
// Convert float Fahrenheit to Celsius
float DallasTemperature::toCelsius(float fahrenheit)
{
return (fahrenheit - 32) / 1.8;
}
// convert from raw to Celsius
float DallasTemperature::rawToCelsius(const int16_t raw)
{
if (raw <= DEVICE_DISCONNECTED_RAW)
return DEVICE_DISCONNECTED_C;
// C = RAW/16
return (float)raw * 0.0625;
}
// convert from raw to Fahrenheit
float DallasTemperature::rawToFahrenheit(const int16_t raw)
{
if (raw <= DEVICE_DISCONNECTED_RAW)
return DEVICE_DISCONNECTED_F;
// C = RAW/16
// F = (C*1.8)+32 = (RAW/16*1.8)+32 = (RAW*0.1125)+32
return ((float)raw * 0.1125) + 32;
}
#if REQUIRESNEW
// MnetCS - Allocates memory for DallasTemperature. Allows us to instance a new object
void* DallasTemperature::operator new(unsigned int size) // Implicit NSS obj size
{
void * p; // void pointer
p = malloc(size); // Allocate memory
memset((DallasTemperature*)p,0,size); // Initialise memory
//!!! CANT EXPLICITLY CALL CONSTRUCTOR - workaround by using an init() methodR - workaround by using an init() method
return (DallasTemperature*) p; // Cast blank region to NSS pointer
}
// MnetCS 2009 - Free the memory used by this instance
void DallasTemperature::operator delete(void* p)
{
DallasTemperature* pNss = (DallasTemperature*) p; // Cast to NSS pointer
pNss->~DallasTemperature(); // Destruct the object
free(p); // Free the memory
}
#endif