forked from rhett-chen/graspness_implementation
-
Notifications
You must be signed in to change notification settings - Fork 9
/
train.py
148 lines (122 loc) · 6.15 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import sys
import numpy as np
from datetime import datetime
import argparse
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(ROOT_DIR, 'pointnet2'))
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
sys.path.append(os.path.join(ROOT_DIR, 'models'))
sys.path.append(os.path.join(ROOT_DIR, 'dataset'))
from models.graspnet import GraspNet
from models.loss import get_loss
from dataset.graspnet_dataset import GraspNetDataset, minkowski_collate_fn, load_grasp_labels
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_root', default=None, required=True)
parser.add_argument('--camera', default='kinect', help='Camera split [realsense/kinect]')
parser.add_argument('--checkpoint_path', help='Model checkpoint path', default=None)
parser.add_argument('--model_name', type=str, default=None)
parser.add_argument('--log_dir', default='logs/log')
parser.add_argument('--num_point', type=int, default=15000, help='Point Number [default: 20000]')
parser.add_argument('--seed_feat_dim', default=512, type=int, help='Point wise feature dim')
parser.add_argument('--voxel_size', type=float, default=0.005, help='Voxel Size to process point clouds ')
parser.add_argument('--max_epoch', type=int, default=10, help='Epoch to run [default: 18]')
parser.add_argument('--batch_size', type=int, default=4, help='Batch Size during training [default: 2]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--resume', action='store_true', default=False, help='Whether to resume from checkpoint')
cfgs = parser.parse_args()
# ------------------------------------------------------------------------- GLOBAL CONFIG BEG
EPOCH_CNT = 0
CHECKPOINT_PATH = cfgs.checkpoint_path if cfgs.checkpoint_path is not None and cfgs.resume else None
if not os.path.exists(cfgs.log_dir):
os.makedirs(cfgs.log_dir)
LOG_FOUT = open(os.path.join(cfgs.log_dir, 'log_train.txt'), 'a')
LOG_FOUT.write(str(cfgs) + '\n')
def log_string(out_str):
LOG_FOUT.write(out_str + '\n')
LOG_FOUT.flush()
print(out_str)
# Init datasets and dataloaders
def my_worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
pass
grasp_labels = load_grasp_labels(cfgs.dataset_root)
TRAIN_DATASET = GraspNetDataset(cfgs.dataset_root, grasp_labels=grasp_labels, camera=cfgs.camera, split='train',
num_points=cfgs.num_point, voxel_size=cfgs.voxel_size,
remove_outlier=True, augment=True, load_label=True)
print('train dataset length: ', len(TRAIN_DATASET))
TRAIN_DATALOADER = DataLoader(TRAIN_DATASET, batch_size=cfgs.batch_size, shuffle=True,
num_workers=0, worker_init_fn=my_worker_init_fn, collate_fn=minkowski_collate_fn)
print('train dataloader length: ', len(TRAIN_DATALOADER))
net = GraspNet(seed_feat_dim=cfgs.seed_feat_dim, is_training=True)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
# Load the Adam optimizer
optimizer = optim.Adam(net.parameters(), lr=cfgs.learning_rate)
start_epoch = 0
if CHECKPOINT_PATH is not None and os.path.isfile(CHECKPOINT_PATH):
checkpoint = torch.load(CHECKPOINT_PATH)
net.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch']
log_string("-> loaded checkpoint %s (epoch: %d)" % (CHECKPOINT_PATH, start_epoch))
# TensorBoard Visualizers
TRAIN_WRITER = SummaryWriter(os.path.join(cfgs.log_dir, 'train'))
def get_current_lr(epoch):
lr = cfgs.learning_rate
lr = lr * (0.95 ** epoch)
return lr
def adjust_learning_rate(optimizer, epoch):
lr = get_current_lr(epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def train_one_epoch():
stat_dict = {} # collect statistics
adjust_learning_rate(optimizer, EPOCH_CNT)
net.train()
batch_interval = 20
for batch_idx, batch_data_label in enumerate(TRAIN_DATALOADER):
for key in batch_data_label:
if 'list' in key:
for i in range(len(batch_data_label[key])):
for j in range(len(batch_data_label[key][i])):
batch_data_label[key][i][j] = batch_data_label[key][i][j].to(device)
else:
batch_data_label[key] = batch_data_label[key].to(device)
end_points = net(batch_data_label)
loss, end_points = get_loss(end_points)
loss.backward()
optimizer.step()
optimizer.zero_grad()
for key in end_points:
if 'loss' in key or 'acc' in key or 'prec' in key or 'recall' in key or 'count' in key:
if key not in stat_dict:
stat_dict[key] = 0
stat_dict[key] += end_points[key].item()
if (batch_idx + 1) % batch_interval == 0:
log_string(' ----epoch: %03d ---- batch: %03d ----' % (EPOCH_CNT, batch_idx + 1))
for key in sorted(stat_dict.keys()):
TRAIN_WRITER.add_scalar(key, stat_dict[key] / batch_interval,
(EPOCH_CNT * len(TRAIN_DATALOADER) + batch_idx) * cfgs.batch_size)
log_string('mean %s: %f' % (key, stat_dict[key] / batch_interval))
stat_dict[key] = 0
def train(start_epoch):
global EPOCH_CNT
for epoch in range(start_epoch, cfgs.max_epoch):
EPOCH_CNT = epoch
log_string('**** EPOCH %03d ****' % epoch)
log_string('Current learning rate: %f' % (get_current_lr(epoch)))
log_string(str(datetime.now()))
# Reset numpy seed.
# REF: https://github.com/pytorch/pytorch/issues/5059
np.random.seed()
train_one_epoch()
save_dict = {'epoch': epoch + 1, 'optimizer_state_dict': optimizer.state_dict(),
'model_state_dict': net.state_dict()}
torch.save(save_dict, os.path.join(cfgs.log_dir, cfgs.model_name + '_epoch' + str(epoch + 1).zfill(2) + '.tar'))
if __name__ == '__main__':
train(start_epoch)