-
Notifications
You must be signed in to change notification settings - Fork 62
/
instruments.lib
263 lines (222 loc) · 9.18 KB
/
instruments.lib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
//instruments.lib - Faust function of various types useful for building physical model instruments
no = library("noises.lib");
en = library("envelopes.lib");
ma = library("maths.lib");
ba = library("basics.lib");
de = library("delays.lib");
si = library("signals.lib");
fi = library("filters.lib");
os = library("oscillators.lib");
re = library("reverbs.lib");
declare name "Faust-STK Tools Library";
declare author "Romain Michon ([email protected])";
declare copyright "Romain Michon";
declare version "1.0.0";
declare licence "STK-4.3"; // Synthesis Tool Kit 4.3 (MIT style license);
//========================= ENVELOPE GENERATORS ===============================
//----------------------- VIBRATO ENVELOPE ----------------------------
// 4 phases envelope to control vibrato gain
//
// USAGE:
// _ : *(envVibrato(b,a,s,r,t)) : _
// where
// b = beginning duration (silence) in seconds
// a = attack duration in seconds
// s = sustain as a percentage of the amplitude to be modified
// r = release duration in seconds
// t = trigger signal
envVibrato(b,a,s,r,t) = env ~ (_,_,_) : (!,!,_) // the 3 'state' signals are fed back
with {
env(p2,cnt,y) =
(t>0) & (p2|(y>=1)),
(cnt + 1)*(t>0), // counter for the first step "b"
(y + p1*p3*u*(s/100) - p4*w*y)*((p4==0)|(y>=eps)) // y = envelop signal
//*(y>=eps) // cut off tails to prevent denormals
with {
p1 = (p2==0) & (t>0) & (y<1) & (cnt>(b*ma.SR)); // p1 = attack phase
p3 = 1-(cnt<(nb)); // p3 = beginning phase
p4 = (t<=0) & (y>0); // p4 = release phase
// #samples in attack, release, must be >0
nb = ma.SR*b+(b==0.0) ; na = ma.SR*a+(a==0.0); nr = ma.SR*r+(r==0.0);
// attack and (-60dB) release rates
z = s+(s==0.0)*ba.db2linear(-60);
u = 1/na; w = 1-1/pow(z*ba.db2linear(60), 1/nr);
// values below this threshold are considered zero in the release phase
eps = ba.db2linear(-120);
};
};
//----------------------- ASYMPT60 ----------------------------
// Envelope generator which asymptotically approaches a target value.
//
// USAGE:
// asympT60(value,trgt,T60,trig) : _
// where
// value = starting value
// trgt = target value
// T60 = ramping time
// trig = trigger signal
asympT60(value,trgt,T60,trig) = (_*factor + constant)~_
with {
cntSample = *(trig) + 1~_ : -(1);
attDur = float(2);
cndFirst = ((cntSample < attDur) & (trig > 0));
target = value*cndFirst + trgt*(cndFirst < 1);
factorAtt = exp(-7/attDur);
factorT60 = exp(-7/(T60*float(ma.SR)));
factor = factorAtt*((cntSample < attDur) & (trig > 0)) +
((cntSample >= attDur) | (trig < 1))*factorT60;
constant = (1 - factor)*target;
};
//========================= TABLES ===============================
//----------------------- CLIPPING FUNCTION ----------------------------
// Positive and negative clipping functions.
//
// USAGE:
// _ : saturationPos : _
// _ : saturationNeg : _
// _ : saturationPos : saturationNeg : _
saturationPos(x) = x <: (_>1),(_<=1 : *(x)) :> +;
saturationNeg(x) = x <: (_<-1),(_>=-1 : *(x)) :> *(-1) + _;
//----------------------- BOW TABLE ----------------------------
// Simple bow table.
//
// USAGE:
// index : bow(offset,slope) : _
// where
// 0 <= index <= 1
bow(offset,slope) = pow(abs(sample) + 0.75, -4) : saturationPos
with {
sample(y) = (y + offset)*slope;
};
//----------------------- REED TABLE ----------------------------
// Simple reed table to be used with waveguide models of clarinet, saxophone, etc.
//
// USAGE:
// _ : reed(offset,slope) : _
// where
// offset = offset between 0 and 1
// slope = slope between 0 and 1
// REFERENCE:
// <https://ccrma.stanford.edu/~jos/pasp/View_Single_Reed_Oscillation.html>
reed(offset,slope) = reedTable : saturationPos : saturationNeg
with {
reedTable = offset + (slope*_);
};
//========================= FILTERS ===============================
//----------------------- ONE POLE ----------------------------
onePole(b0,a1,x) = (b0*x - a1*_)~_;
//----------------------- ONE POLE SWEPT ----------------------------
onePoleSwep(a1,x) = (1 + a1)*x - a1*x';
//----------------------- POLE ZERO ----------------------------
poleZero(b0,b1,a1,x) = (b0*x + b1*x' - a1*_)~_;
//----------------------- ONE ZEROS ----------------------------
// Simple One zero and One zero recursive filters
//
// USAGE:
// _ : oneZero0(b0,b1) : _
// _ : oneZero1(b0,b1) : _
// REFERENCE:
// <https://ccrma.stanford.edu/~jos/fp2/One_Zero.html>
oneZero0(b0,b1,x) = (*(b1) + x*b0)~_;
oneZero1(b0,b1,x) = (x'*b1 + x*b0);
//----------------------- BANDPASS FILTER WITH CONSTANT UNITY PEAK GAIN BASED ON A BIQUAD ----------------------------
bandPass(resonance,radius) = fi.TF2(b0,b1,b2,a1,a2)
with {
a2 = radius*radius;
a1 = -2*radius*cos(ma.PI*2*resonance/ma.SR);
b0 = 0.5-0.5*a2;
b1 = 0;
b2 = -b0;
};
//----------------------- BANDPASS FILTER BASED ON A BIQUAD ----------------------------
// Band pass filter using a biquad (TF2 is declared in filter.lib)
//
// USAGE:
// _ : bandPassH(resonance,radius) : _
// where
// resonance = center frequency
// radius = radius
bandPassH(resonance,radius) = fi.TF2(b0,b1,b2,a1,a2)
with {
a2 = radius*radius;
a1 = -2*radius*cos(ma.PI*2*resonance/ma.SR);
b0 = 1;
b1 = 0;
b2 = 0;
};
//----------------------- FLUE JET NON-LINEAR FUNCTION ----------------------------
// Jet Table: flue jet non-linear function, computed by a polynomial calculation
jetTable(x) = x <: _*(_*_-1) : saturationPos : saturationNeg;
//----------------------- NON LINEAR MODULATOR ----------------------------
// nonLinearModulator adapts the function allpassnn from filter.lib for using it with waveguide instruments (see the corresponding DAFx paper: <https://ccrma.stanford.edu/~rmichon/publications/doc/DAFx11-Faust-STK.pdf> (Faust-STK: a Set of Linear and Nonlinear Physical Models for the Faust Programming Language) for more details).
//
// USAGE:
// _ : nonLinearModulator(nonlinearity,env,freq,typeMod,freqMod,order) : _
// where
// nonlinearity = nonlinearity coefficient between 0 and 1
// env = input to connect any kind of envelope
// freq = current tone frequency
// typeMod = if 0: theta is modulated by the incoming signal;
// if 1: theta is modulated by the averaged incoming signal;
// if 2: theta is modulated by the squared incoming signal;
// if 3: theta is modulated by a sine wave of frequency freqMod;
// if 4: theta is modulated by a sine wave of frequency freq;
// freqMod = frequency of the sine wave modulation
// order = order of the filter
nonLinearModulator(nonlinearity,env,freq,typeMod,freqMod,order) =
//theta is modulated by a sine wave
_ <: nonLinearFilterOsc*(typeMod >= 3),
//theta is modulated by the incoming signal
(_ <: nonLinearFilterSig*nonlinearity,_*(1 - nonlinearity) :> +)*(typeMod < 3)
:> +
with {
//which frequency to use for the sine wave oscillator?
freqOscMod = (typeMod == 4)*freq + (typeMod != 4)*freqMod;
//the incoming signal is scaled and the envelope is applied
tsignorm(x) = nonlinearity*ma.PI*x*env;
tsigsquared(x) = nonlinearity*ma.PI*x*x*env; //incoming signal is squared
tsigav(x) = nonlinearity*ma.PI*((x + x')/2)*env; //incoming signal is averaged with its previous sample
//select which version of the incoming signal of theta to use
tsig(x) = tsignorm(x)*(typeMod == 0) + tsigav(x)*(typeMod == 1)
+ tsigsquared(x)*(typeMod == 2);
//theta is modulated by a sine wave generator
tosc = nonlinearity*ma.PI*os.osc(freqOscMod)*env;
//incoming signal is sent to the nonlinear passive allpass ladder filter
nonLinearFilterSig(x) = x <: fi.allpassnn(order,(par(i,order,tsig(x))));
nonLinearFilterOsc = _ <: fi.allpassnn(order,(par(i,order,tosc)));
};
//========================= TOOLS ===============================
//----------------------- STEREOIZER ----------------------------
// This function takes a mono input signal and spacialize it in stereo
// in function of the period duration of the tone being played.
//
// USAGE:
// _ : stereo(periodDuration) : _,_
// where
// periodDuration = period duration of the tone being played in number of samples
// REFERENCE:
// <https://ccrma.stanford.edu/realsimple/faust_strings/>
stereoizer(periodDuration) = _ <: _,widthdelay : stereopanner
with {
W = hslider("v:Spat/spatial width", 0.5, 0, 1, 0.01);
A = hslider("v:Spat/pan angle", 0.6, 0, 1, 0.01);
widthdelay = de.delay(4096,W*periodDuration/2);
stereopanner = _,_ : *(1.0-A), *(A);
};
//----------------------- INSTRREVERB ----------------------------
// GUI for zita_rev1_stereo from reverbs.lib
//
// USAGE:
// _,_ : instrRerveb
instrReverb = _,_ <: *(reverbGain),*(reverbGain),*(1 - reverbGain),*(1 - reverbGain) :
re.zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax),_,_ <: _,!,_,!,!,_,!,_ : +,+
with {
reverbGain = hslider("v:Reverb/reverbGain",0.137,0,1,0.01) : si.smoo;
roomSize = hslider("v:Reverb/roomSize",0.72,0.01,2,0.01);
rdel = 20;
f1 = 200;
f2 = 6000;
t60dc = roomSize*3;
t60m = roomSize*2;
fsmax = 48000;
};