Skip to content

Latest commit

 

History

History
77 lines (56 loc) · 2.65 KB

GCP.markdown

File metadata and controls

77 lines (56 loc) · 2.65 KB

gcloud auth list gcloud config list project gcloud config set compute/zone us-central1-a gcloud container clusters create awwvision
--num-nodes 2
--scopes cloud-platform

gcloud container clusters get-credentials awwvision

gcloud ai-platform models create flights --regions us-central1 gcloud ai-platform versions create v1 --model flights
--origin ${MODEL_LOCATION}
--runtime-version 1.10

kubectl cluster-info kubectl get pods kubectl get deployments -o wide

export PROJECT_ID=$(gcloud info --format='value(config.project)') export BUCKET=${PROJECT_ID}

gsutil cp gs://${BUCKET}/flights/chapter9/linear-model.tar.gz ~ MODEL_LOCATION=$(gsutil ls $OUTPUT_DIR/export/exporter | tail -1)

gsutil mv -p gs://gnpqwiklabs_cloudstorageconsole/800px-Ada_Lovelace_portrait.jpg gs://gnpqwiklabs_cloudstorageconsole/ada.jpg gsutil mv -p gs://gnpqwiklabs_cloudstorageconsole/folder1/folder2/800px-Ada_Lovelace_portrait.jpg gs://gnpqwiklabs_cloudstorageconsole/folder1/folder2/

export JOBNAME=dnn_flights_$(date -u +%y%m%d_%H%M%S)

gcloud ml-engine jobs submit training $JOBNAME
--module-name=trainer.task
--package-path=$(pwd)/flights/trainer
--job-dir=$OUTPUT_DIR
--staging-bucket=gs://$BUCKET
--region=$REGION
--scale-tier=STANDARD_1
--runtime-version=1.10
--
--output_dir=$OUTPUT_DIR
--traindata $DATA_DIR/train* --evaldata $DATA_DIR/test*

gcloud ml-engine jobs submit training $JOBNAME
--module-name=trainer.task
--package-path=$(pwd)/flights/trainer
--job-dir=$OUTPUT_DIR
--staging-bucket=gs://$BUCKET
--region=$REGION
--scale-tier=STANDARD_1
--runtime-version=1.10
--
--output_dir=$OUTPUT_DIR
--traindata $DATA_DIR/train* --evaldata $DATA_DIR/test*

WARNING: The gcloud ml-engine commands have been renamed and will soon be removed. Please use gcloud ai-platform instead.

sudo pip install --upgrade google-api-python-client sudo pip install --upgrade oauth2client

gcloud container clusters get-credentials burt-kubeflow --zone us-central1-a --project fermilab-nord-ldrd
&& kubectl port-forward --namespace kubeflow $(kubectl get pod --namespace kubeflow --selector="service=ambassador" --output jsonpath='{.items[0].metadata.name}') 8080:80

export BUCKET_NAME=kubeflow-${PROJECT_ID} gsutil mb gs://${BUCKET_NAME}

gcloud config set core/project $PROJECT_ID gcloud config set compute/zone us-central1-f gsutil mb -c multi_regional -l us gs://gnp-housing-predict datalab create my-datalab --machine-type n1-standard-4

gcloud ai-platform jobs describe housing_190826_224933 gcloud ai-platform jobs stream-logs housing_190826_224933