-
Notifications
You must be signed in to change notification settings - Fork 0
/
Model_define_tf_noQuan.py
276 lines (225 loc) · 9.73 KB
/
Model_define_tf_noQuan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
from tkinter import X
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import math
#This part realizes the quantization and dequantization operations.
#The output of the encoder must be the bitstream.
def Num2Bit(Num, B):
Num_ = Num.numpy()
bit = (np.unpackbits(np.array(Num_, np.uint8), axis=1).reshape(-1, Num_.shape[1], 8)[:, :, 4:]).reshape(-1, Num_.shape[1] * B)
bit.astype(np.float32)
return tf.convert_to_tensor(bit, dtype=tf.float32)
def Bit2Num(Bit, B):
Bit_ = Bit.numpy()
Bit_.astype(np.float32)
Bit_ = np.reshape(Bit_, [-1, int(Bit_.shape[1] / B), B])
num = np.zeros(shape=np.shape(Bit_[:, :, 1]))
for i in range(B):
num = num + Bit_[:, :, i] * 2 ** (B - 1 - i)
return tf.cast(num, dtype=tf.float32)
@tf.custom_gradient
def QuantizationOp(x, B):
step = tf.cast((2 ** B), dtype=tf.float32)
result = tf.cast((tf.round(x * step - 0.5)), dtype=tf.float32)
result = tf.py_function(func=Num2Bit, inp=[result, B], Tout=tf.float32)
def custom_grad(dy):
grad = dy
return (grad, grad)
return result, custom_grad
class QuantizationLayer(tf.keras.layers.Layer):
def __init__(self, B,**kwargs):
self.B = B
super(QuantizationLayer, self).__init__()
def call(self, x):
return QuantizationOp(x, self.B)
def get_config(self):
# Implement get_config to enable serialization. This is optional.
base_config = super(QuantizationLayer, self).get_config()
base_config['B'] = self.B
return base_config
@tf.custom_gradient
def DequantizationOp(x, B):
x = tf.py_function(func=Bit2Num, inp=[x, B], Tout=tf.float32)
step = tf.cast((2 ** B), dtype=tf.float32)
result = tf.cast((x + 0.5) / step, dtype=tf.float32)
def custom_grad(dy):
grad = dy * 1
return (grad, grad)
return result, custom_grad
class DeuantizationLayer(tf.keras.layers.Layer):
def __init__(self, B,**kwargs):
self.B = B
super(DeuantizationLayer, self).__init__()
def call(self, x):
return DequantizationOp(x, self.B)
def get_config(self):
base_config = super(DeuantizationLayer, self).get_config()
base_config['B'] = self.B
return base_config
image_size = 128 # We'll resize input images to this size
patch_size = 32 # Size of the patches to be extract from the input images
num_patches = (image_size // patch_size) ** 2
projection_dim = 128
DEC_PROJECTION_DIM = 64
LAYER_NORM_EPS = 1e-6
num_heads = 4
transformer_units = [
projection_dim * 2,
projection_dim,
] # Size of the transformer layers
transformer_layers = 8
dec_layers = 2
DEC_TRANSFORMER_UNITS = [
DEC_PROJECTION_DIM * 2,
DEC_PROJECTION_DIM,
]
mlp_head_units = [1024, 512] # Size of the dense layers of the final classifier
def mlp(x, hidden_units, dropout_rate, trainable=True):
for units in hidden_units:
x = layers.Dense(units, activation=tf.nn.gelu, trainable=trainable)(x)
x = layers.Dropout(dropout_rate)(x)
return x
class Patches(layers.Layer):
def __init__(self, patch_size):
super(Patches, self).__init__()
self.patch_size = patch_size
def call(self, images):
batch_size = tf.shape(images)[0]
patches = tf.image.extract_patches(
images=images,
sizes=[1, self.patch_size, self.patch_size, 1],
strides=[1, self.patch_size, self.patch_size, 1],
rates=[1, 1, 1, 1],
padding="VALID",
)
patch_dims = patches.shape[-1]
patches = tf.reshape(patches, [batch_size, -1, patch_dims])
return patches
def get_config(self):
config = super().get_config().copy()
config.update({
'patch_size': self.patch_size
})
return config
class PatchEncoder(layers.Layer):
def __init__(self, num_patches, projection_dim, trainable):
super(PatchEncoder, self).__init__()
self.num_patches = num_patches
self.projection = layers.Dense(units=projection_dim,trainable=trainable)
self.position_embedding = layers.Embedding(
input_dim=num_patches, output_dim=projection_dim,trainable=trainable
)
def call(self, patch):
positions = tf.range(start=0, limit=self.num_patches, delta=1)
encoded = self.projection(patch) + self.position_embedding(positions)
return encoded
def get_config(self):
config = super().get_config().copy()
config.update({
'num_patches': self.num_patches,
'projection': self.projection,
'position_embedding': self.position_embedding,
})
return config
# transformer
def Encoder(x, feedback_bits, trainable=True):
B = 4
with tf.compat.v1.variable_scope('Encoder'):
x = layers.Conv2D(2, 7, padding='same', trainable=trainable,name="enc_conv_1")(x)
x = layers.BatchNormalization(trainable=trainable,name="enc_bn_1")(x)
x = layers.LeakyReLU(alpha=0.1)(x)
#补0.5至128*128
x=x-0.5
x=layers.ZeroPadding2D(padding=(1, 0))(x)
x=x+0.5
# Augment data.
# augmented = data_augmentation(inputs)
# x = layers.Normalization()(x)
# Create patches.
patches = Patches(patch_size)(x)
# Encode patches.
encoded_patches = PatchEncoder(num_patches, projection_dim, trainable=trainable)(patches)
# Create multiple layers of the Transformer block.
# for _ in range(transformer_layers):
# # Layer normalization 1.
# x1 = layers.LayerNormalization(epsilon=LAYER_NORM_EPS, trainable=trainable)(encoded_patches)
# # Create a multi-head attention layer.
# attention_output = layers.MultiHeadAttention(
# num_heads=num_heads, key_dim=projection_dim, dropout=0.1, trainable=trainable
# )(x1, x1)
# # Skip connection 1.
# x2 = layers.Add()([attention_output, encoded_patches])
# # Layer normalization 2.
# x3 = layers.LayerNormalization(epsilon=LAYER_NORM_EPS, trainable=trainable)(x2)
# # MLP.
# x3 = mlp(x3, hidden_units=transformer_units, dropout_rate=0.1, trainable=trainable)
# # Skip connection 2.
# encoded_patches = layers.Add()([x3, x2])
# Create a [batch_size, projection_dim] tensor.
representation = layers.LayerNormalization(epsilon=LAYER_NORM_EPS,trainable=trainable,name="enc_ln_3")(encoded_patches)
representation = layers.Flatten()(representation)
representation = layers.Dropout(0.2)(representation)
# Add MLP.
# features = mlp(representation, hidden_units=mlp_head_units, dropout_rate=0.2,trainable=trainable)
features=representation
# Classify outputs.
x = layers.Dense(units=int(feedback_bits // B), activation='sigmoid',trainable=trainable,name="enc_dense_5")(features)
encoder_output = x
return encoder_output
def Decoder(x,feedback_bits, trainable=True):
B = 4
# decoder_input = DeuantizationLayer(B)(x)
# x = tf.reshape(decoder_input, (-1, int(feedback_bits//B)))
# x = layers.Dense(num_patches*projection_dim, trainable=trainable,name="dec_dense_1")(x)
# x = layers.BatchNormalization(trainable=trainable,name="dec_bn_1")(x)
# x = layers.Activation('sigmoid')(x)
# inputs = layers.Reshape((num_patches, projection_dim))(x)
# x = layers.Dense(DEC_PROJECTION_DIM,trainable=trainable,name="dec_dense_2")(inputs)
# for _ in range(dec_layers):
# # Layer normalization 1.
# x1 = layers.LayerNormalization(epsilon=LAYER_NORM_EPS,trainable=trainable)(x)
# # Create a multi-head attention layer.
# attention_output = layers.MultiHeadAttention(
# num_heads=num_heads, key_dim=DEC_PROJECTION_DIM, dropout=0.1,trainable=trainable
# )(x1, x1)
# # Skip connection 1.
# x2 = layers.Add()([attention_output, x])
# # Layer normalization 2.
# x3 = layers.LayerNormalization(epsilon=LAYER_NORM_EPS,trainable=trainable)(x2)
# # MLP.
# x3 = mlp(x3, hidden_units=DEC_TRANSFORMER_UNITS, dropout_rate=0.1,trainable=trainable)
# # Skip connection 2.
# x = layers.Add()([x3, x2])
x = layers.LayerNormalization(epsilon=LAYER_NORM_EPS, trainable=trainable,name="dec_ln_3")(x)
x = layers.Flatten()(x)
x = layers.Dense(512, trainable=trainable,name="dec_dense_4")(x)
x = layers.BatchNormalization(trainable=trainable,name="dec_bn_4")(x)
x = layers.Activation('sigmoid')(x)
pre_final = layers.Dense(units=126 * 128 * 2, activation="sigmoid", trainable=trainable,name="dec_dense_5")(x)
x = layers.Reshape((126, 128, 2))(pre_final)
x = layers.Conv2D(2, 7, padding='same', trainable=trainable,name="dec_conv_6")(x)
x = layers.BatchNormalization(trainable=trainable,name="dec_bn_6")(x)
decoder_output = layers.LeakyReLU(alpha=0.1)(x)
return decoder_output
def NMSE(x, x_hat):
x_real = np.reshape(x[:, :, :, 0], (len(x), -1))
x_imag = np.reshape(x[:, :, :, 1], (len(x), -1))
x_hat_real = np.reshape(x_hat[:, :, :, 0], (len(x_hat), -1))
x_hat_imag = np.reshape(x_hat[:, :, :, 1], (len(x_hat), -1))
x_C = x_real - 0.5 + 1j * (x_imag - 0.5)
x_hat_C = x_hat_real - 0.5 + 1j * (x_hat_imag - 0.5)
power = np.sum(abs(x_C) ** 2, axis=1)
mse = np.sum(abs(x_C - x_hat_C) ** 2, axis=1)
nmse = np.mean(mse / power)
return nmse
# Return keywords of your own custom layers to ensure that model
# can be successfully loaded in test file.
def get_custom_objects():
return {
"QuantizationLayer":QuantizationLayer,
"DeuantizationLayer":DeuantizationLayer,
"Patches":Patches,
"PatchEncoder":PatchEncoder
}