-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_cifar_siamese.py
223 lines (185 loc) · 9.18 KB
/
train_cifar_siamese.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import argparse, time, logging
import os
import numpy as np
import mxnet as mx
from tqdm import tqdm
from mxnet import gluon
from mxnet import autograd as ag
from mxnet.gluon.data.vision import transforms
import gluoncv as gcv
gcv.utils.check_version('0.6.0')
from gluoncv.model_zoo import get_model
from gluoncv.utils import makedirs
from mxboard import SummaryWriter
import sys
from model_zoo.siamese import SiameseNet
from dataloader import PairDataset
from loss import ContrastiveLoss
# CLI
def parse_args():
parser = argparse.ArgumentParser(description='Train a model for image classification.')
parser.add_argument('--batch-size', type=int, default=512,
help='training batch size per device (CPU/GPU).')
parser.add_argument('--num-gpus', type=int, default=1,
help='number of gpus to use.')
parser.add_argument('--model', type=str, default='cifar_resnet20_v2',
help='model to use. options are resnet and wrn. default is resnet.')
parser.add_argument('--dataset', type=str, default='cifar10', help="Which dataset to use: cifar10 or cifar100")
parser.add_argument('-j', '--num-data-workers', dest='num_workers', default=4, type=int,
help='number of preprocessing workers')
parser.add_argument('--num-epochs', type=int, default=40,
help='number of training epochs.')
parser.add_argument('--drop-rate', type=float, default=0.0,
help='dropout rate for wide resnet. default is 0.')
parser.add_argument('--save-period', type=int, default=25,
help='period in epoch of model saving.')
parser.add_argument('--save-dir', type=str, default='snapshots',
help='directory of saved models')
parser.add_argument('--resume-from', type=str,
help='resume training from the model')
opt = parser.parse_args()
return opt
def main():
opt = parse_args()
batch_size = opt.batch_size
classes = 10
# Init transformer
# See https://mxnet.apache.org/api/python/docs/tutorials/packages/gluon/data/data_augmentation.html
jitter_param = 0.4
transform_train = transforms.Compose([
transforms.Resize(32),
transforms.RandomResizedCrop((32, 32), scale=(0.8, 1.0), ratio=(0.9, 1.1)),
transforms.RandomFlipLeftRight(),
transforms.RandomColorJitter(brightness=jitter_param, contrast=jitter_param, saturation=jitter_param,
hue=jitter_param),
transforms.ToTensor(),
transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])
])
transform_test = transforms.Compose([
transforms.Resize(32),
transforms.ToTensor(),
transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])
])
transform_test_viz = transforms.Compose([
transforms.Resize(32),
transforms.ToTensor(),
])
dataset = opt.dataset
if dataset == 'cifar10':
dataset_train = gluon.data.vision.CIFAR10(train=True)
dataset_test = gluon.data.vision.CIFAR10(train=False)
elif dataset == 'cifar100':
dataset_train = gluon.data.vision.CIFAR100(train=True, fine_label=True)
dataset_test = gluon.data.vision.CIFAR100(train=False, fine_label=True)
else:
print("Dataset: {} is unknow".format(dataset))
pair_dataset_train = PairDataset(dataset_train, transform=transform_train)
pair_dataset_train_loader = gluon.data.DataLoader(pair_dataset_train, batch_size=batch_size, shuffle=True, last_batch='discard', num_workers=opt.num_workers)
dataset_test_loader = gluon.data.DataLoader(dataset_test.transform_first(transform_test), batch_size=batch_size, shuffle=False, num_workers=opt.num_workers)
# TODO : Try normalizing but failed so we will loop through val set again to get data without normalization
dataset_test_loader_2 = gluon.data.DataLoader(dataset_test.transform_first(transform_test_viz), batch_size=batch_size, shuffle=False, num_workers=opt.num_workers)
print("Number of train sample: {}".format(len(pair_dataset_train)))
print("Number of val sample: {}".format(len(dataset_test)))
num_gpus = opt.num_gpus
batch_size *= max(1, num_gpus)
context = [mx.gpu(i) for i in range(num_gpus)] if num_gpus > 0 else [mx.cpu()]
model_name = opt.model
if model_name.startswith('cifar_wideresnet'):
kwargs = {'classes': classes, 'drop_rate': opt.drop_rate, 'pretrained': False, 'ctx': context}
else:
kwargs = {'classes': classes, 'pretrained': False, 'ctx': context}
net = get_model(model_name, **kwargs)
siamesenet = SiameseNet(net.features)
siamesenet.hybridize()
siamesenet.initialize(mx.init.Xavier(), ctx=context)
if opt.resume_from:
siamesenet.load_parameters(opt.resume_from, ctx=context)
# Note: Copy parameters from net into siamese. This will make training unconvergeble....
# else:
# net_params = net.collect_params()
# siamesenet_params = siamesenet.collect_params()
# for p1, p2 in zip(net_params.values(), siamesenet_params.values()):
# p2.set_data(p1.data())
save_period = opt.save_period
if opt.save_dir and save_period:
save_dir = os.path.join(opt.save_dir, "params")
log_dir = os.path.join(opt.save_dir, "logs")
else:
save_dir = 'params'
log_dir = 'logs'
save_period = 0
makedirs(save_dir)
makedirs(log_dir)
def test(val_data, val_data_2, ctx, epoch):
embedding = None
labels = None
images = None
initialized = False
for i, (data, label) in enumerate(val_data):
if i >= 20:
# only fetch the first 20 batches of images
break
data = gluon.utils.split_and_load(data, ctx_list=ctx, batch_axis=0)
label = gluon.utils.split_and_load(label, ctx_list=ctx, batch_axis=0)
outputs = [siamesenet.get_feature(X) for X in data]
outputs = mx.nd.concat(*outputs, dim=0)
label = mx.nd.concat(*label, dim=0)
if initialized:
embedding = mx.nd.concat(*(embedding, outputs), dim=0)
labels = mx.nd.concat(*(labels, label), dim=0)
else:
embedding = outputs
labels = label
initialized = True
for i, (data, _) in enumerate(val_data_2):
data = gluon.utils.split_and_load(data, ctx_list=ctx, batch_axis=0)
data = mx.nd.concat(*data, dim=0)
if images is None:
images = data
else:
images = mx.nd.concat(*(images, data), dim=0)
with SummaryWriter(logdir=log_dir) as sw:
sw.add_embedding(tag='{}_siamese_{}'.format(opt.dataset, epoch), embedding=embedding, labels=labels, images=images)
def train(train_data, val_data, epochs, ctx):
if isinstance(ctx, mx.Context):
ctx = [ctx]
siamesenet.forward(mx.nd.ones((1, 3, 32, 32), ctx=ctx[0]), mx.nd.ones((1, 3, 32, 32), ctx=ctx[0]))
with SummaryWriter(logdir=log_dir, verbose=False) as sw:
sw.add_graph(siamesenet)
trainer = gluon.Trainer(siamesenet.collect_params(), 'adam', {'learning_rate': 0.001})
# Init contrastive loss
margin = 6
loss_fn = ContrastiveLoss(margin)
global_step = 0
for epoch in range(epochs):
train_loss = 0
num_batch = len(train_data)
tbar = tqdm(train_data)
for i, batch in enumerate(tbar):
batch_loss = 0
data0 = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
data1 = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0)
label = gluon.utils.split_and_load(batch[2], ctx_list=ctx, batch_axis=0)
with ag.record():
output = [siamesenet(x1, x2) for x1, x2 in zip(data0, data1)]
loss = [loss_fn(x1, x2, y) for (x1, x2), y in zip(output, label)]
for l in loss:
l.backward()
batch_loss += l.mean().asscalar()
trainer.step(batch_size)
train_loss += sum([l.sum().asscalar() for l in loss])
global_step += batch_size
with SummaryWriter(logdir=log_dir, verbose=False) as sw:
sw.add_scalar(tag="BatchLoss", value=batch_loss, global_step=global_step)
train_loss /= batch_size * num_batch
with SummaryWriter(logdir=log_dir, verbose=False) as sw:
sw.add_scalar(tag="TrainLoss", value=train_loss, global_step=global_step)
if save_period and save_dir and (epoch + 1) % save_period == 0:
# Test on first device
test(val_data, dataset_test_loader_2, ctx, epoch)
siamesenet.save_parameters('{}/{}-{}.params'.format(save_dir, model_name, epoch))
if save_period and save_dir:
siamesenet.save_parameters('{}/{}-{}.params'.format(save_dir, model_name, epochs-1))
train(pair_dataset_train_loader, dataset_test_loader, opt.num_epochs, context)
if __name__ == '__main__':
main()