diff --git a/Carleson/RealInterpolation.lean b/Carleson/RealInterpolation.lean index 2d24c7a7..97028f30 100644 --- a/Carleson/RealInterpolation.lean +++ b/Carleson/RealInterpolation.lean @@ -42,10 +42,10 @@ lemma ENNReal_preservation_positivity₀ {p q : ℝ≥0∞} (ht : t ∈ Ioo 0 1) have t_mem : ENNReal.ofReal t ∈ Ioo 0 1 := ⟨ofReal_pos.mpr ht.1, ENNReal.ofReal_one ▸ (ofReal_lt_ofReal_iff zero_lt_one).mpr ht.2⟩ cases hpq <;> rename_i dir - · exact Left.add_pos_of_pos_of_nonneg (mul_pos (ne_of_gt (tsub_pos_of_lt t_mem.2)) + · exact Left.add_pos_of_pos_of_nonneg (mul_pos ((tsub_pos_of_lt t_mem.2).ne.symm) (ENNReal.inv_ne_zero.mpr (dir))) (zero_le _) · exact Right.add_pos_of_nonneg_of_pos (zero_le _) - (mul_pos (ne_of_gt (ofReal_pos.mpr ht.1)) (ENNReal.inv_ne_zero.mpr (dir))) + (mul_pos ((ofReal_pos.mpr ht.1).ne.symm) (ENNReal.inv_ne_zero.mpr (dir))) lemma ENNReal_preservation_positivity {p q : ℝ≥0∞} (ht : t ∈ Ioo 0 1) (hpq : p ≠ q) : 0 < (1 - ENNReal.ofReal t) * p⁻¹ + (ENNReal.ofReal t) * q⁻¹ := by @@ -55,17 +55,17 @@ lemma ENNReal_preservation_positivity {p q : ℝ≥0∞} (ht : t ∈ Ioo 0 1) (h lemma ENNReal_preservation_positivity' {p p₀ p₁ : ℝ≥0∞} (hp₀ : p₀ > 0) (hp₁ : p₁ > 0) (hp : p⁻¹ = (1 - ENNReal.ofReal t) * p₀⁻¹ + (ENNReal.ofReal t) * p₁⁻¹) : p > 0 := inv_lt_top.mp (hp ▸ Ne.lt_top (add_ne_top.mpr ⟨mul_ne_top (Ne.symm (ne_of_beq_false (by rfl))) - (inv_ne_top.mpr (ne_of_gt hp₀)), mul_ne_top (coe_ne_top) (inv_ne_top.mpr (ne_of_gt hp₁))⟩)) + (inv_ne_top.mpr hp₀.ne.symm), mul_ne_top (coe_ne_top) (inv_ne_top.mpr hp₁.ne.symm)⟩)) lemma interp_exp_ne_top {p p₀ p₁ : ℝ≥0∞} (hp₀p₁ : p₀ ≠ p₁) (ht : t ∈ Ioo 0 1) (hp : p⁻¹ = (1 - ENNReal.ofReal t) * p₀⁻¹ + (ENNReal.ofReal t) * p₁⁻¹) : p ≠ ⊤ := - ENNReal.inv_ne_zero.mp (hp ▸ ne_of_gt (ENNReal_preservation_positivity ht hp₀p₁)) + ENNReal.inv_ne_zero.mp (hp ▸ (ENNReal_preservation_positivity ht hp₀p₁).ne.symm) lemma interp_exp_ne_top' {p p₀ p₁ : ℝ≥0∞} (hp₀p₁ : p₀ ≠ ⊤ ∨ p₁ ≠ ⊤) (ht : t ∈ Ioo 0 1) (hp : p⁻¹ = (1 - ENNReal.ofReal t) * p₀⁻¹ + (ENNReal.ofReal t) * p₁⁻¹) : p ≠ ⊤ := - ENNReal.inv_ne_zero.mp (hp ▸ ne_of_gt (ENNReal_preservation_positivity₀ ht hp₀p₁)) + ENNReal.inv_ne_zero.mp (hp ▸ (ENNReal_preservation_positivity₀ ht hp₀p₁).ne.symm) lemma interp_exp_eq {p p₀ p₁ : ℝ≥0∞} (hp₀p₁ : p₀ = p₁) (ht : t ∈ Ioo 0 1) @@ -100,7 +100,7 @@ lemma interp_exp_between {p p₀ p₁ : ℝ≥0∞} (hp₀ : p₀ > 0) (hp₁ : exact ofReal_lt_one.mpr ht.2 nth_rw 2 [this] gcongr - · exact mul_ne_top (sub_ne_top top_ne_one.symm) (inv_ne_top.mpr (ne_of_gt hp₀)) + · exact mul_ne_top (sub_ne_top top_ne_one.symm) (inv_ne_top.mpr hp₀.ne.symm) · exact (ofReal_pos.mpr ht.1).ne.symm · exact coe_ne_top · apply ENNReal.inv_lt_inv.mp @@ -110,8 +110,8 @@ lemma interp_exp_between {p p₀ p₁ : ℝ≥0∞} (hp₀ : p₀ > 0) (hp₁ : exact ofReal_lt_one.mpr ht.2 nth_rw 1 [this] gcongr - · exact mul_ne_top coe_ne_top (inv_ne_top.mpr (ne_of_gt hp₁)) - · exact ne_of_gt (tsub_pos_iff_lt.mpr (ofReal_lt_one.mpr ht.2)) + · exact mul_ne_top coe_ne_top (inv_ne_top.mpr hp₁.ne.symm) + · exact (tsub_pos_iff_lt.mpr (ofReal_lt_one.mpr ht.2)).ne.symm · exact coe_ne_top lemma one_le_interp_exp_aux {p p₀ p₁ : ℝ≥0∞} (hp₀ : 1 ≤ p₀) (hp₁ : 1 ≤ p₁) @@ -165,7 +165,7 @@ lemma rpow_ne_top' {a : ℝ≥0∞} {q : ℝ} (ha : a ≠ 0) (ha' : a ≠ ⊤) · exact (ha' a_top).elim lemma exp_toReal_pos' {q : ℝ≥0∞} (hq : q ≥ 1) (hq' : q < ⊤) : q.toReal > 0 := - toReal_pos (ne_of_gt (lt_of_lt_of_le zero_lt_one hq)) (LT.lt.ne_top hq') + toReal_pos (lt_of_lt_of_le zero_lt_one hq).ne.symm (LT.lt.ne_top hq') lemma ne_top_of_Ico {p q r : ℝ≥0∞} (hq : q ∈ Ico p r) : q ≠ ⊤ := hq.2.ne_top @@ -182,18 +182,19 @@ lemma pos_of_rb_Ioc {p q r : ℝ≥0∞} (hr : q ∈ Ioc p r) : 0 < r := Trans.trans (Trans.trans (zero_le p) hr.left) hr.right lemma exp_toReal_ne_zero {q : ℝ≥0∞} (hq : q ≥ 1) (hq' : q < ⊤) : q.toReal ≠ 0 := - ne_of_gt (exp_toReal_pos' hq hq') + (exp_toReal_pos' hq hq').ne.symm -- TODO: remove the top one? lemma exp_toReal_ne_zero' {q : ℝ≥0∞} (hq : q > 0) (hq' : q ≠ ⊤) : q.toReal ≠ 0 := - ne_of_gt <| toReal_pos (ne_of_gt hq) hq' + (toReal_pos hq.ne.symm hq').ne.symm lemma exp_toReal_ne_zero_of_Ico {q p : ℝ≥0∞} (hq : q ∈ Ico 1 p) : q.toReal ≠ 0 := exp_toReal_ne_zero hq.1 (lt_top_of_Ico hq) lemma pos_of_Ioo {p q r : ℝ≥0∞} (hq : q ∈ Ioo p r) : q > 0 := pos_of_gt hq.1 -lemma ne_zero_of_Ioo {p q r : ℝ≥0∞} (hq : q ∈ Ioo p r) : q ≠ 0 := ne_of_gt (pos_of_gt hq.1) +lemma ne_zero_of_Ioo {p q r : ℝ≥0∞} (hq : q ∈ Ioo p r) : q ≠ 0 := (pos_of_gt hq.1).ne.symm + lemma pos_of_Icc_1 {p q : ℝ≥0∞} (hp : p ∈ Icc 1 q) : p > 0 := lt_of_lt_of_le zero_lt_one hp.1 lemma pos_of_ge_1 {p : ℝ≥0∞} (hp : 1 ≤ p) : p > 0 := lt_of_lt_of_le zero_lt_one hp @@ -213,7 +214,7 @@ lemma eq_of_rpow_eq (a b: ℝ≥0∞) (c : ℝ) (hc : c ≠ 0) (h : a ^ c = b ^ exact congrFun (congrArg HPow.hPow h) c⁻¹ lemma le_of_rpow_le {a b: ℝ≥0∞} {c : ℝ} (hc : c > 0) (h : a ^ c ≤ b ^ c) : a ≤ b := by - rw [← ENNReal.rpow_rpow_inv (ne_of_gt hc) a, ← ENNReal.rpow_rpow_inv (ne_of_gt hc) b] + rw [← ENNReal.rpow_rpow_inv hc.ne.symm a, ← ENNReal.rpow_rpow_inv hc.ne.symm b] exact (ENNReal.rpow_le_rpow_iff (inv_pos_of_pos hc)).mpr h -- TODO : decide if this is wanted @@ -221,7 +222,7 @@ lemma le_of_rpow_le {a b: ℝ≥0∞} {c : ℝ} (hc : c > 0) (h : a ^ c ≤ b ^ -- coe x := ENNReal.ofReal x lemma coe_inv_exponent (hp₀ : p₀ > 0) : ENNReal.ofReal (p₀⁻¹.toReal) = p₀⁻¹ := - ofReal_toReal_eq_iff.mpr (inv_ne_top.mpr (ne_of_gt hp₀)) + ofReal_toReal_eq_iff.mpr (inv_ne_top.mpr hp₀.ne.symm) lemma inv_of_interpolated_pos' (hp₀p₁ : p₀ ≠ p₁) (ht : t ∈ Ioo 0 1) (hp : p⁻¹ = (1 - ENNReal.ofReal t) * p₀⁻¹ + (ENNReal.ofReal t) * p₁⁻¹) : 0 < p⁻¹ := @@ -233,7 +234,7 @@ lemma interpolated_pos' (hp₀ : p₀ > 0) (hp₁ : p₁ > 0) ENNReal_preservation_positivity' hp₀ hp₁ hp lemma exp_toReal_pos (hp₀ : p₀ > 0) (hp₀' : p₀ ≠ ⊤) : 0 < p₀.toReal := - toReal_pos (ne_of_gt hp₀) hp₀' + toReal_pos hp₀.ne.symm hp₀' lemma interp_exp_in_Ioo_zero_top (ht : t ∈ Ioo 0 1) (hp₀ : p₀ > 0) (hp₁ : p₁ > 0) (hp₀p₁ : p₀ ≠ ⊤ ∨ p₁ ≠ ⊤) @@ -1298,7 +1299,7 @@ lemma d_eq_top_top (hq₀ : q₀ > 0) (hq₀q₁ : q₀ ≠ q₁) (hp₁' : p₁ rw [← hq₁'] exact hq₀q₁ · apply ENNReal.inv_ne_top.mpr - apply ne_of_gt hq₀ + apply hq₀.ne.symm /-- The particular choice of scaled power function that works in the proof of the real interpolation theorem. -/ @@ -1468,7 +1469,7 @@ lemma lintegral_rpow_of_gt {β γ : ℝ} (hβ : β > 0) (hγ : γ > -1) : rw [← ofReal_integral_eq_lintegral_ofReal] · rw [← intervalIntegral.integral_of_le (le_of_lt hβ)] rw [integral_rpow] - · rw [Real.zero_rpow (ne_of_gt hγ2), sub_zero] + · rw [Real.zero_rpow hγ2.ne.symm, sub_zero] · exact Or.inl hγ · apply (@intervalIntegral.intervalIntegrable_rpow' 0 β γ ?_).1 linarith @@ -2034,13 +2035,13 @@ lemma trunc_compl_Lp_Lq_lower [MeasurableSpace E₁] [NormedAddCommGroup E₁] [ (hpq : q ∈ Ioo 0 p) (ha : a > 0) (hf : Memℒp f p μ) : Memℒp (trnc ⊥ f a) q μ := by refine ⟨aestronglyMeasurable_trnc hf.1, ?_⟩ - have : q.toReal > 0 := toReal_pos (ne_of_gt hpq.left) (LT.lt.ne_top hpq.right) + have : q.toReal > 0 := toReal_pos hpq.left.ne.symm (LT.lt.ne_top hpq.right) refine (rpow_lt_top_iff_of_pos this).mp ?_ refine lt_of_le_of_lt (estimate_eLpNorm_trunc_compl hp hpq (AEStronglyMeasurable.aemeasurable hf.1) ha ) ?_ apply mul_lt_top coe_lt_top refine (rpow_lt_top_iff_of_pos ?_).mpr hf.2 - exact toReal_pos (ne_of_gt (lt_trans hpq.left hpq.right)) hp + exact toReal_pos (lt_trans hpq.left hpq.right).ne.symm hp end MeasureTheory @@ -2665,7 +2666,7 @@ lemma lintegral_lintegral_pow_swap_rpow {α : Type u_1} {β : Type u_3} {p : ℝ have p_pos : p > 0 := lt_of_lt_of_le zero_lt_one hp have p_inv_pos : p⁻¹ > 0 := inv_pos_of_pos p_pos refine le_of_rpow_le p_inv_pos ?_ - rw [ENNReal.rpow_rpow_inv (ne_of_gt p_pos)] + rw [ENNReal.rpow_rpow_inv p_pos.ne.symm] apply lintegral_lintegral_pow_swap hp hf /-! ## Apply Minkowski's integral inequality to truncations @@ -3021,19 +3022,19 @@ lemma estimate_trnc₁ {spf : ScaledPowerFunction} {j : Bool} · cases j · unfold sel dsimp only - apply ne_of_gt hp₀ + apply hp₀.ne.symm · unfold sel dsimp only - apply ne_of_gt hp₁ + apply hp₁.ne.symm · exact hp' · apply toReal_pos · cases j · unfold sel dsimp only - apply ne_of_gt hq₀ + apply hq₀.ne.symm · unfold sel dsimp only - apply ne_of_gt hq₁ + apply hq₁.ne.symm · exact hq' · exact toReal_mono hq' hpq · exact hf @@ -3107,7 +3108,7 @@ lemma estimate_trnc₁ {spf : ScaledPowerFunction} {j : Bool} congr rw [← one_div] refine Eq.symm (eLpNorm_eq_lintegral_rpow_nnnorm ?_ ?_) - · exact ne_of_gt (interpolated_pos' hp₀ hp₁ hp) + · exact (interpolated_pos' hp₀ hp₁ hp).ne.symm · refine interp_exp_ne_top (ne_of_lt hp₀p₁) ht hp -- TODO: move this to Weaktype.lean? @@ -3127,7 +3128,7 @@ lemma wnorm_eq_zero_iff {f : α → E₁} {p : ℝ≥0∞} [NormedAddCommGroup E rw [essSup_eq_sInf] at this let b := (min (sInf {a : ℝ≥0∞ | μ {x | a < ↑‖f x‖₊} = 0}) 1) / 2 have b_lt_inf : b < min (sInf {a : ℝ≥0∞ | μ {x | a < ↑‖f x‖₊} = 0}) 1 := - ENNReal.half_lt_self (ne_of_gt (lt_min this zero_lt_one)) + ENNReal.half_lt_self (lt_min this zero_lt_one).ne.symm (ne_of_lt (lt_of_le_of_lt (min_le_right _ 1) one_lt_top)) have meas_ne_zero : μ {x | b < ↑‖f x‖₊} ≠ 0 := by intro h @@ -3137,7 +3138,7 @@ lemma wnorm_eq_zero_iff {f : α → E₁} {p : ℝ≥0∞} [NormedAddCommGroup E _ < _ := b_lt_inf _ ≤ _ := min_le_left _ _ have iSup_b := iSup_wnorm b.toNNReal - have b_ne_0 : b ≠ 0 := ne_of_gt (ENNReal.half_pos (ne_of_gt (lt_min this zero_lt_one))) + have b_ne_0 : b ≠ 0 := (ENNReal.half_pos (lt_min this zero_lt_one).ne.symm).ne.symm have p_toReal_inv_pos : p.toReal⁻¹ > 0 := inv_pos_of_pos (toReal_pos hp h₀) have coe_b : ENNReal.ofNNReal b.toNNReal = b := coe_toNNReal (LT.lt.ne_top b_lt_inf) have : distribution f b μ = 0 := by @@ -3175,7 +3176,7 @@ lemma weaktype_estimate {C₀ : ℝ≥0} {p : ℝ≥0∞} {q : ℝ≥0∞} {f : have wt_est := (h₀T f hf).2 -- the weaktype estimate have q_pos : q.toReal > 0 := by refine toReal_pos ?_ ?_ - · apply (ne_of_gt) hq + · apply hq.ne.symm · exact LT.lt.ne_top hq' have tq_pos : ENNReal.ofReal t ^ q.toReal > 0 := coe_pow_pos ht have tq_ne_top : (ENNReal.ofReal t) ^ q.toReal ≠ ⊤ := coe_rpow_ne_top' q_pos @@ -3219,14 +3220,14 @@ lemma weaktype_aux₀ {p₀ q₀ p q : ℝ≥0∞} [NormedAddCommGroup E₁] [No (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (hf : AEStronglyMeasurable f μ) (hF : eLpNorm f p μ = 0) : eLpNorm (T f) q ν = 0 := by - have f_ae_0 : f =ᵐ[μ] 0 := (eLpNorm_eq_zero_iff hf (ne_of_gt hp)).mp hF - have hf₂ : eLpNorm f p₀ μ = 0 := (eLpNorm_eq_zero_iff hf (ne_of_gt hp₀)).mpr f_ae_0 + have f_ae_0 : f =ᵐ[μ] 0 := (eLpNorm_eq_zero_iff hf hp.ne.symm).mp hF + have hf₂ : eLpNorm f p₀ μ = 0 := (eLpNorm_eq_zero_iff hf hp₀.ne.symm).mpr f_ae_0 have hf₁ : Memℒp f p₀ μ := ⟨hf, by rw [hf₂]; exact zero_lt_top⟩ have := (h₀T f hf₁).2 rw [hf₂, mul_zero] at this have wnorm_0 : wnorm (T f) q₀ ν = 0 := nonpos_iff_eq_zero.mp this - have : (T f) =ᵐ[ν] 0 := (wnorm_eq_zero_iff (ne_of_gt hq₀)).mp wnorm_0 - exact (eLpNorm_eq_zero_iff (h₀T _ hf₁).1 (ne_of_gt hq)).mpr this + have : (T f) =ᵐ[ν] 0 := (wnorm_eq_zero_iff hq₀.ne.symm).mp wnorm_0 + exact (eLpNorm_eq_zero_iff (h₀T _ hf₁).1 hq.ne.symm).mpr this lemma weaktype_estimate_trunc_compl {C₀ : ℝ≥0} {p p₀: ℝ≥0∞} {f : α → E₁} [MeasurableSpace E₁] [NormedAddCommGroup E₁] [BorelSpace E₁] [NormedAddCommGroup E₂] @@ -3319,7 +3320,7 @@ lemma weaktype_estimate_trunc_compl_top {C₀ : ℝ≥0} (hC₀ : C₀ > 0) {p p intro snorm_0 apply Ne.symm (ne_of_lt snorm_pos) apply eLpNormEssSup_eq_zero_iff.mpr - exact (eLpNorm_eq_zero_iff hf.1 (ne_of_gt p_pos)).mp snorm_0 + exact (eLpNorm_eq_zero_iff hf.1 p_pos.ne.symm).mp snorm_0 have term_pos : (ENNReal.ofNNReal C₀) ^ p₀.toReal * eLpNorm f p μ ^ p.toReal > 0 := by apply ENNReal.mul_pos @@ -3336,7 +3337,7 @@ lemma weaktype_estimate_trunc_compl_top {C₀ : ℝ≥0} (hC₀ : C₀ > 0) {p p apply mul_ne_top · refine rpow_ne_top' ?_ ?_ · apply ENNReal.coe_ne_zero.mpr - apply ne_of_gt hC₀ + apply hC₀.ne.symm · exact coe_ne_top · exact rpow_ne_top' snorm_p_pos (Memℒp.eLpNorm_ne_top hf) have d_pos : d > 0 := by @@ -3432,7 +3433,7 @@ lemma weaktype_estimate_trunc_top {C₁ : ℝ≥0} (hC₁ : C₁ > 0) {p p₁ q intro snorm_0 apply Ne.symm (ne_of_lt snorm_pos) apply eLpNormEssSup_eq_zero_iff.mpr - exact (eLpNorm_eq_zero_iff hf.1 (ne_of_gt hp)).mp snorm_0 + exact (eLpNorm_eq_zero_iff hf.1 hp.ne.symm).mp snorm_0 have term_pos : (ENNReal.ofNNReal C₁) ^ p₁.toReal * eLpNorm f p μ ^ p.toReal > 0 := by apply ENNReal.mul_pos @@ -3448,7 +3449,7 @@ lemma weaktype_estimate_trunc_top {C₁ : ℝ≥0} (hC₁ : C₁ > 0) {p p₁ q apply mul_ne_top · refine rpow_ne_top' ?_ ?_ · apply ENNReal.coe_ne_zero.mpr - apply ne_of_gt hC₁ + apply hC₁.ne.symm · exact coe_ne_top · exact rpow_ne_top' snorm_p_pos (Memℒp.eLpNorm_ne_top hf) have d_pos : d > 0 := by @@ -3475,7 +3476,7 @@ lemma weaktype_estimate_trunc_top {C₁ : ℝ≥0} (hC₁ : C₁ > 0) {p p₁ q rw [ENNReal.ofReal_div_of_pos] <;> try positivity rw [div_eq_mul_inv] ring - · apply ne_of_gt (sub_pos.mpr (toReal_strict_mono p₁ne_top hp₁p)) + · apply (sub_pos.mpr (toReal_strict_mono p₁ne_top hp₁p)).ne.symm · positivity _ = _ := by rw [ofReal_rpow_of_pos ht] @@ -3936,12 +3937,11 @@ lemma simplify_factor₁ {D : ℝ} · exact ne_top_of_Ioo hF · exact ne_zero_of_Ioo hF · exact ne_top_of_Ioo hF - · apply ne_of_gt - exact ENNReal.coe_pos.mpr hC₁ + · apply (ENNReal.coe_pos.mpr hC₁).ne.symm · exact coe_ne_top · apply ENNReal.inv_ne_zero.mpr apply rpow_ne_top' - · apply ne_of_gt (ENNReal.coe_pos.mpr hC₁) + · apply (ENNReal.coe_pos.mpr hC₁).ne.symm · exact coe_ne_top · apply ENNReal.inv_ne_zero.mpr exact d_ne_top_aux₂ hF @@ -4091,7 +4091,7 @@ lemma combine_estimates₀ {A : ℝ} (hA : A > 0) have : SigmaFinite (μ.restrict (Function.support f)) := by apply support_sigma_finite_from_Memℒp (p := p) hf · exact interp_exp_ne_top (ne_of_lt hp₀p₁) ht hp - · exact ne_of_gt p_pos + · exact p_pos.ne.symm let tc := spf_to_tc spf have := spf.hd calc @@ -4244,15 +4244,14 @@ lemma combine_estimates₁ {A : ℝ} [MeasurableSpace E₁] [NormedAddCommGroup (((if (q₁ < ⊤) then 1 else 0) * ENNReal.ofReal |q.toReal - q₁.toReal|⁻¹ + (if (q₀ < ⊤) then 1 else 0) * ENNReal.ofReal |q.toReal - q₀.toReal|⁻¹)) ^ q⁻¹.toReal * C₀ ^ (1 - t) * C₁ ^ t * eLpNorm f p μ := by - have q_ne_zero : q ≠ 0 := - ne_of_gt (interpolated_pos' (lt_of_lt_of_le hp₀.1 hp₀.2) (lt_of_lt_of_le hp₁.1 hp₁.2) hq) + have q_ne_zero : q ≠ 0 := (interpolated_pos' (lt_of_lt_of_le hp₀.1 hp₀.2) (lt_of_lt_of_le hp₁.1 hp₁.2) hq).ne.symm have q_ne_top : q ≠ ⊤ := interp_exp_ne_top hq₀q₁ ht hq have q'pos : q.toReal > 0 := toReal_pos q_ne_zero q_ne_top refine le_of_rpow_le q'pos ?_ calc _ = ∫⁻ x , ‖T f x‖₊ ^ q.toReal ∂ν := by unfold eLpNorm eLpNorm' - split_ifs <;> [contradiction; rw [one_div, ENNReal.rpow_inv_rpow (ne_of_gt q'pos)]] + split_ifs <;> [contradiction; rw [one_div, ENNReal.rpow_inv_rpow q'pos.ne.symm]] _ ≤ _ := by apply combine_estimates₀ (hT := hT) (p := p) <;> try assumption @@ -4265,10 +4264,10 @@ lemma combine_estimates₁ {A : ℝ} [MeasurableSpace E₁] [NormedAddCommGroup · rw [toReal_inv] rw [ENNReal.rpow_inv_rpow] · exact ofReal_toReal_eq_iff.mpr q_ne_top - · exact ne_of_gt q'pos + · exact q'pos.ne.symm · rw [toReal_inv] rw [ENNReal.rpow_inv_rpow] - exact ne_of_gt q'pos + exact q'pos.ne.symm lemma simplify_factor₃ [NormedAddCommGroup E₁] (hp₀ : p₀ > 0) (hp₀' : p₀ ≠ ⊤) (ht : t ∈ Ioo 0 1) (hp : p⁻¹ = (1 - (ENNReal.ofReal t)) * p₀⁻¹ + (ENNReal.ofReal t) * p₁⁻¹) (hp₀p₁ : p₀ = p₁) : @@ -4280,7 +4279,7 @@ lemma simplify_factor₃ [NormedAddCommGroup E₁] (hp₀ : p₀ > 0) (hp₀' : try positivity apply ne_of_gt apply toReal_pos - · apply ne_of_gt hp₀ + · apply hp₀.ne.symm · exact hp₀' lemma simplify_factor_aux₄ [NormedAddCommGroup E₁] (hq₀' : q₀ ≠ ⊤) @@ -4295,7 +4294,7 @@ lemma simplify_factor_aux₄ [NormedAddCommGroup E₁] (hq₀' : q₀ ≠ ⊤) have := (Ioo.one_sub_mem ht).1 have p₀pos : p₀ > 0 := hp₀.1 have p₀ne_top : p₀ ≠ ⊤ := ne_top_of_le_ne_top hq₀' hp₀.2 - have p₀toReal_pos : p₀.toReal > 0 := toReal_pos (ne_of_gt p₀pos) (p₀ne_top) + have p₀toReal_pos : p₀.toReal > 0 := toReal_pos p₀pos.ne.symm (p₀ne_top) rw [hp', ← hp₀p₁] have : ∀ a b c d : ℝ≥0∞, a * b * c * d = a * c * (b * d) := by intro a b c d; ring rw [this] @@ -4364,14 +4363,14 @@ lemma exists_hasStrongType_real_interpolation_aux₀ {p₀ p₁ q₀ q₁ p q : have q₀pos : q₀ > 0 := pos_of_rb_Ioc hp₀ have q₁pos : q₁ > 0 := pos_of_rb_Ioc hp₁ have q_pos : q > 0 := interpolated_pos' q₀pos q₁pos hq - have f_ae_0 : f =ᵐ[μ] 0 := (eLpNorm_eq_zero_iff hf.1 (ne_of_gt p_pos)).mp hF - have hf₂ : eLpNorm f p₀ μ = 0 := (eLpNorm_eq_zero_iff hf.1 (ne_of_gt p₀pos)).mpr f_ae_0 + have f_ae_0 : f =ᵐ[μ] 0 := (eLpNorm_eq_zero_iff hf.1 p_pos.ne.symm).mp hF + have hf₂ : eLpNorm f p₀ μ = 0 := (eLpNorm_eq_zero_iff hf.1 p₀pos.ne.symm).mpr f_ae_0 have hf₁ : Memℒp f p₀ μ := ⟨hf.1, by rw [hf₂]; exact zero_lt_top⟩ have := (h₀T f hf₁).2 rw [hf₂, mul_zero] at this have wnorm_0 : wnorm (T f) q₀ ν = 0 := nonpos_iff_eq_zero.mp this - have : (T f) =ᵐ[ν] 0 := (wnorm_eq_zero_iff (ne_of_gt q₀pos)).mp wnorm_0 - exact (eLpNorm_eq_zero_iff (h₂T hf) (ne_of_gt q_pos)).mpr this + have : (T f) =ᵐ[ν] 0 := (wnorm_eq_zero_iff q₀pos.ne.symm).mp wnorm_0 + exact (eLpNorm_eq_zero_iff (h₂T hf) q_pos.ne.symm).mpr this /-- The estimate for the real interpolation theorem in case `p₀ < p₁`. -/ lemma exists_hasStrongType_real_interpolation_aux {p₀ p₁ q₀ q₁ p q : ℝ≥0∞} {A : ℝ} @@ -4428,7 +4427,7 @@ lemma exists_hasStrongType_real_interpolation_aux₁ {f : α → E₁} [Measurab have q₀lt_q_toReal : q₀.toReal < q.toReal := preservation_inequality_of_lt₀ ht q₀pos q₁pos hq hq₀q₁ have q_toReal_ne_zero : q.toReal ≠ 0 := - ne_of_gt <| interp_exp_toReal_pos' ht q₀pos q₁pos hq (Or.inl q₀ne_top) + (interp_exp_toReal_pos' ht q₀pos q₁pos hq (Or.inl q₀ne_top)).ne.symm have M_pos : M > 0 := by apply d_pos <;> try assumption have coe_q : ENNReal.ofReal q.toReal = q := @@ -4507,7 +4506,7 @@ lemma exists_hasStrongType_real_interpolation_aux₂ {f : α → E₁} [Measurab have q₀ne_top : q₀ ≠ ⊤ := LT.lt.ne_top hq₀q₁ have p₀ne_top : p₀ ≠ ⊤ := ne_top_of_le_ne_top q₀ne_top hp₀.2 have q_toReal_ne_zero : q.toReal ≠ 0 := - ne_of_gt <| interp_exp_toReal_pos' ht q₀pos q₁pos hq (Or.inl q₀ne_top) + (interp_exp_toReal_pos' ht q₀pos q₁pos hq (Or.inl q₀ne_top)).ne.symm have p_eq_p₀ : p = p₀ := Eq.symm (interp_exp_eq hp₀p₁ ht hp) rcases (eq_zero_or_pos (eLpNorm f p μ)) with hF | snorm_pos · refine le_of_eq_of_le ?_ (zero_le _)