diff --git a/Carleson/ToMathlib/Height.lean b/Carleson/ToMathlib/Height.lean index ca910c1b..45d31440 100644 --- a/Carleson/ToMathlib/Height.lean +++ b/Carleson/ToMathlib/Height.lean @@ -42,13 +42,12 @@ set. Some results -/ - +-- https://github.com/leanprover-community/mathlib4/pull/15341 theorem ENat.lt_add_one_iff (n m : ℕ∞) (hm : n ≠ ⊤) : m < n + 1 ↔ m ≤ n := by cases n <;> cases m <;> try contradiction · norm_num · norm_cast; omega - lemma ENat.iSup_eq_coe_iff' {α : Type*} [Nonempty α] (f : α → ℕ∞) (n : ℕ) : (⨆ x, f x = n) ↔ (∃ x, f x = n) ∧ (∀ y, f y ≤ n) := by constructor @@ -86,18 +85,12 @@ lemma ENat.iSup_eq_coe_iff {α : Type*} [Nonempty α] (f : α → ℕ) (n : Nat) (⨆ x, (f x : ℕ∞) = n) ↔ (∃ x, f x = n) ∧ (∀ y, f y ≤ n) := by simp [ENat.iSup_eq_coe_iff'] -@[simp] -theorem ENat.iSup_eq_zero {ι : Type*} (s : ι → ℕ∞) : iSup s = 0 ↔ ∀ i, s i = 0 := iSup_eq_bot - - +-- https://github.com/leanprover-community/mathlib4/pull/15342 @[simp] lemma ENat.not_lt_zero (n : ℕ∞) : ¬ n < 0 := by cases n <;> simp -@[simp] -lemma ENat.coe_lt_top (n : ℕ) : (n : ℕ∞) < ⊤ := by - exact Batteries.compareOfLessAndEq_eq_lt.mp rfl - +-- https://github.com/leanprover-community/mathlib4/pull/15344 lemma ENat.isup_add (ι : Type*) [Nonempty ι] (f : ι → ℕ∞) (n : ℕ∞) : (⨆ x, f x) + n = (⨆ x, f x + n) := by cases n; simp; next n =>