diff --git a/Carleson/Classical/CarlesonOperatorReal.lean b/Carleson/Classical/CarlesonOperatorReal.lean index 2c13b8fe..0162849f 100644 --- a/Carleson/Classical/CarlesonOperatorReal.lean +++ b/Carleson/Classical/CarlesonOperatorReal.lean @@ -49,7 +49,7 @@ lemma sup_eq_sup_dense_of_continuous {f : ℝ → ENNReal} {S : Set ℝ} (D : Se lemma helper {n : ℤ} {f : ℝ → ℂ} (hf : Measurable f) : Measurable (Function.uncurry fun x y ↦ f y * K x y * (Complex.I * n * y).exp) := - Measurable.mul (Measurable.mul (hf.comp measurable_snd) Hilbert_kernel_measurable) + ((hf.comp measurable_snd).mul Hilbert_kernel_measurable).mul (measurable_const.mul (Complex.measurable_ofReal.comp measurable_snd)).cexp local notation "T" => CarlesonOperatorReal K @@ -209,7 +209,7 @@ lemma CarlesonOperatorReal_measurable {f : ℝ → ℂ} (f_measurable : Measurab rw [← stronglyMeasurable_iff_measurable] apply MeasureTheory.StronglyMeasurable.integral_prod_right rw [stronglyMeasurable_iff_measurable, Fdef] - exact Measurable.indicator (helper f_measurable) (measurable_dist measurableSet_Ioo) + exact (helper f_measurable).indicator (measurable_dist measurableSet_Ioo) lemma CarlesonOperatorReal_mul {f : ℝ → ℂ} {x : ℝ} {a : ℝ} (ha : 0 < a) : T f x = a.toNNReal * T (fun x ↦ 1 / a * f x) x := by rw [CarlesonOperatorReal, CarlesonOperatorReal, ENNReal.mul_iSup]