diff --git a/Carleson/ToMathlib/Height.lean b/Carleson/ToMathlib/Height.lean index 45d31440..f73673cd 100644 --- a/Carleson/ToMathlib/Height.lean +++ b/Carleson/ToMathlib/Height.lean @@ -48,6 +48,7 @@ theorem ENat.lt_add_one_iff (n m : ℕ∞) (hm : n ≠ ⊤) : m < n + 1 ↔ m · norm_num · norm_cast; omega +-- Parts of it in https://github.com/leanprover-community/mathlib4/pull/15347 lemma ENat.iSup_eq_coe_iff' {α : Type*} [Nonempty α] (f : α → ℕ∞) (n : ℕ) : (⨆ x, f x = n) ↔ (∃ x, f x = n) ∧ (∀ y, f y ≤ n) := by constructor