diff --git a/Carleson/ForestOperator.lean b/Carleson/ForestOperator.lean index d2c47df..3b722f2 100644 --- a/Carleson/ForestOperator.lean +++ b/Carleson/ForestOperator.lean @@ -201,7 +201,7 @@ lemma second_tree_pointwise (hu : u โˆˆ t) (hL : L โˆˆ ๐“› (t u)) (hx : x โˆˆ L ยท unfold defaultD; positivity _ < _ := by rw [mul_comm]; gcongr have d1 : dist_{x, D ^ (sโ‚‚ - 1)} (๐’ฌ u) (Q x) < 1 := by - have := le_cdist_iterate (x := x) (r := D ^ (sโ‚‚ - 1)) (by sorry) (๐’ฌ u) (Q x) (100 * a) + have := le_cdist_iterate (x := x) (r := D ^ (sโ‚‚ - 1)) (by positivity) (๐’ฌ u) (Q x) (100 * a) calc _ โ‰ค dist_{x, D ^ sโ‚‚} (๐’ฌ u) (Q x) * 2 ^ (-100 * a : โ„ค) := by rw [neg_mul, zpow_neg, le_mul_inv_iffโ‚€ (by positivity), mul_comm] diff --git a/blueprint/src/chapter/main.tex b/blueprint/src/chapter/main.tex index 27c3352..60b71f5 100644 --- a/blueprint/src/chapter/main.tex +++ b/blueprint/src/chapter/main.tex @@ -524,7 +524,7 @@ \chapter{Proof of Metric Space Carleson, overview} For each $\fu\in \fU$ and each $\fp\in \fT(\fu)$ we have $\scI(\fp) \ne \scI(\fu)$ and \begin{equation}\label{forest1} -4\fp\lesssim 1\fu. +4\fp\lesssim \fu. \end{equation} For each $\fu \in \fU$ and each $\fp,\fp''\in \fT(\fu)$ and $\fp'\in \fP$ we have @@ -2897,7 +2897,7 @@ \section{Proof of the Forest Union Lemma} $$ B_{\fu}(\fcc(\fu), 1) \subset B_{\fu'}(\fcc(\fu'), 500) \subset B_{\fp}(\fcc(\fp), 4)\,. $$ - Together with $\scI(\fp) \subset \scI(\fu') = \scI(\fu)$, this gives $4\fp \lesssim 1\fu$, which is \eqref{forest1}. + Together with $\scI(\fp) \subset \scI(\fu') = \scI(\fu)$, this gives $4\fp \lesssim \fu$, which is \eqref{forest1}. \end{proof} \begin{lemma}[forest convex] @@ -4387,7 +4387,7 @@ \section{The pointwise tree estimate} \begin{proof} Let $s_1 = \underline{\sigma}(\fu, x)$. By definition, there exists a tile $\fp \in \fT(\fu)$ with $\ps(\fp) = s_1$ and $x \in E(\fp)$. Then $x \in \scI(\fp) \cap L$. By \eqref{dyadicproperty} and the definition of $\mathcal{L}(\fT(\fu))$, it follows that $L \subset \scI(\fp)$, in particular $x' \in \scI(\fp)$, so $x \in I_{s_1}(x')$. - Next, let $s_2 = \overline{\sigma}(\fu, x)$ and let $\fp' \in \fT(\fu)$ with $\ps(\fp') = s_2$ and $x \in E(\fp')$. Since $\fp' \in \fT(\fu)$, we have $4\fp' \lesssim 1\fu$. Since $\tQ(x) \in \fc(\fp')$, it follows that + Next, let $s_2 = \overline{\sigma}(\fu, x)$ and let $\fp' \in \fT(\fu)$ with $\ps(\fp') = s_2$ and $x \in E(\fp')$. Since $\fp' \in \fT(\fu)$, we have $4\fp' \lesssim \fu$. Since $\tQ(x) \in \fc(\fp')$, it follows that $$ d_{\fp}(\fcc(\fu), \tQ(x)) \le 5\,. $$ @@ -4399,7 +4399,7 @@ \section{The pointwise tree estimate} $$ d_{B(x, D^{s_2})}(\fcc(\fu), \tQ(x)) \le 5 \cdot 2^{5a}\,. $$ - Finally, by applying \eqref{seconddb} $2^{100a}$ times, we obtain + Finally, by applying \eqref{seconddb} $100a$ times, we obtain $$ d_{B(x, D^{s_2-1})}(\fcc(\fu), \tQ(x)) \le 5 \cdot 2^{-95a} < 1\,. $$