From 8593df13f5a4465c586064204a7da4724c0b9f33 Mon Sep 17 00:00:00 2001 From: Christoph Thiele Date: Mon, 11 Dec 2023 16:37:27 +0100 Subject: [PATCH] work on 3.1 --- Carleson/Carleson.lean | 26 ++++++++++++++++---------- 1 file changed, 16 insertions(+), 10 deletions(-) diff --git a/Carleson/Carleson.lean b/Carleson/Carleson.lean index 90997e22..3336c639 100644 --- a/Carleson/Carleson.lean +++ b/Carleson/Carleson.lean @@ -94,12 +94,16 @@ lemma sum_Ks {s : Finset ℤ} (hs : nonzeroS D (dist x y) ⊆ s) (hD : 1 < D) (h intros rwa [psi_eq_zero_iff h2ψ h2 hD] -lemma sum_Ks2 {r R : ℝ} (hrR : r < R) (x y : X) : - ∑ i in Finset.Icc ⌊Real.logb 2 r⌋ ⌊Real.logb 2 R⌋, Ks K D ψ i x y = 0 := by - sorry +lemma sum_Ks' {s : Finset ℤ} + (hs : ∀ i : ℤ, (D ^ i * dist x y) ∈ Ioo (4 * D)⁻¹ 2⁻¹ → i ∈ s) + (hD : 1 < D) (h : x ≠ y) : ∑ i in s, Ks K D ψ i x y = K x y := sorry + + + /- (No need to take the supremum over the assumption `σ < σ'`.) -/ -lemma equation3_1 (f : X → ℂ) (h𝓠 : ∀ Q ∈ 𝓠, ∀ x, (Q x).im = 0) : +lemma equation3_1 {f : X → ℂ} (hf : LocallyIntegrable f) + (h𝓠 : ∀ Q ∈ 𝓠, ∀ x, (Q x).im = 0) : let rhs := Ce3_1 A τ q * maximalFunction f x + ⨆ (Q ∈ 𝓠) (σ : ℤ) (σ' : ℤ), ‖∑ s in Finset.Icc σ σ', ∫ y, Ks K D ψ s x y * f y * exp (I * (Q y - Q x))‖ CarlesonOperator K 𝓠 f x ≤ rhs := by @@ -112,8 +116,8 @@ lemma equation3_1 (f : X → ℂ) (h𝓠 : ∀ Q ∈ 𝓠, ∀ x, (Q x).im = 0) refine Real.iSup_le (fun r ↦ ?_) h_rhs refine Real.iSup_le (fun R ↦ ?_) h_rhs refine Real.iSup_le (fun hrR ↦ ?_) h_rhs - let σ : ℤ := ⌊Real.logb 2 r⌋ - let σ' : ℤ := ⌊Real.logb 2 R⌋ + let σ : ℤ := ⌊Real.logb D (2 * r)⌋ + 1 + let σ' : ℤ := ⌈Real.logb D (4 * R)⌉ trans Ce3_1 A τ q * maximalFunction f x + ‖∑ s in Finset.Icc σ σ', ∫ y, Ks K D ψ s x y * f y * exp (I * (Q y - Q x))‖ rw [← sub_le_iff_le_add] @@ -127,11 +131,13 @@ lemma equation3_1 (f : X → ℂ) (h𝓠 : ∀ Q ∈ 𝓠, ∀ x, (Q x).im = 0) apply (norm_sub_norm_le _ _).trans rw [← integral_finset_sum] simp_rw [← Finset.sum_mul] + have h3 : + ∫ (y : X) in {y | dist x y ∈ Set.Ioo r R}, K x y * f y * cexp (I * Q y) = + ∫ (y : X) in {y | dist x y ∈ Set.Ioo r R}, (∑ x_1 in Finset.Icc σ σ', Ks K D ψ x_1 x y) * f y * cexp (I * Q y) + · sorry + -- after we rewrite, we should have only 4 terms of our finset left, all others are 0. These can be estimated using |K x y| ≤ 1 / volume (ball x (dist x y)). + rw [h3, ← neg_sub, ← integral_univ, ← integral_diff] all_goals sorry - -- swap - -- · gcongr - -- refine (le_ciSup _ Q).trans ?_ - -- sorry /- Proof should be straightward from the definition of maximalFunction and conditions on `𝓠`. We have to approximate `Q` by an indicator function.