diff --git a/Carleson.lean b/Carleson.lean index 5b16a073..8ccf6e4e 100644 --- a/Carleson.lean +++ b/Carleson.lean @@ -6,6 +6,7 @@ import Carleson.DoublingMeasure import Carleson.FinitaryCarleson import Carleson.ForestOperator import Carleson.GridStructure +import Carleson.HardyLittlewood import Carleson.HolderVanDerCorput import Carleson.MetricCarleson import Carleson.Proposition2 diff --git a/Carleson/HardyLittlewood.lean b/Carleson/HardyLittlewood.lean new file mode 100644 index 00000000..4fb74692 --- /dev/null +++ b/Carleson/HardyLittlewood.lean @@ -0,0 +1,81 @@ +import Mathlib.Analysis.NormedSpace.FiniteDimension +import Mathlib.Analysis.SpecialFunctions.Log.Base +import Mathlib.MeasureTheory.Integral.Average +import Mathlib.MeasureTheory.Measure.Haar.Basic +import Mathlib.MeasureTheory.Measure.Doubling +import Mathlib.MeasureTheory.Covering.VitaliFamily + +open MeasureTheory Metric Bornology Set +open scoped NNReal ENNReal +noncomputable section + +#check VitaliFamily + +variable {X E} [PseudoMetricSpace X] [MeasurableSpace X] [NormedAddCommGroup E] [NormedSpace ℝ E] + [MeasurableSpace E] [BorelSpace E] + {ΞΌ : Measure X} {f : X β†’ E} {x : X} {𝓑 : Finset (X Γ— ℝ)} + +/-- The Hardy-Littlewood maximal function w.r.t. a collection of balls 𝓑. -/ +def maximalFunction (ΞΌ : Measure X) (𝓑 : Set (X Γ— ℝ)) (p : ℝ) (u : X β†’ E) (x : X) : ℝβ‰₯0∞ := + (⨆ z ∈ 𝓑, (ball z.1 z.2).indicator (x := x) + fun _ ↦ ⨍⁻ y, β€–u yβ€–β‚Š βˆ‚ΞΌ.restrict (ball z.1 z.2)) ^ p⁻¹ + +-- old +-- /-- Hardy-Littlewood maximal function -/ +-- def maximalFunction (ΞΌ : Measure X) (f : X β†’ E) (x : X) : ℝ := +-- ⨆ (x' : X) (Ξ΄ : ℝ) (_hx : x ∈ ball x' Ξ΄), +-- ⨍⁻ y, β€–f yβ€–β‚Š βˆ‚ΞΌ.restrict (ball x' Ξ΄) |>.toReal + +/-! The following results probably require a doubling measure, +and maybe some properties from `ProofData`. +They are the statements from the blueprint. +We probably want a more general version first. -/ + +theorem measure_biUnion_le_lintegral {a : ℝ} (ha : 4 ≀ a) {l : ℝβ‰₯0} (hl : 0 < l) + {u : X β†’ ℝβ‰₯0} (hu : AEStronglyMeasurable u ΞΌ) + (h2u : βˆ€ z ∈ 𝓑, l * ΞΌ (ball z.1 z.2) ≀ ∫⁻ x in ball z.1 z.2, u x βˆ‚ΞΌ) + : + l * ΞΌ (⋃ z ∈ 𝓑, ball z.1 z.2) ≀ 2 ^ (2 * a) * ∫⁻ x, u x βˆ‚ΞΌ := by + sorry + +theorem maximalFunction_lt_top {a : ℝ} (ha : 4 ≀ a) {l : ℝβ‰₯0} (hl : 0 < l) {p₁ pβ‚‚ : ℝβ‰₯0} + (hp₁ : 1 ≀ p₁) (hp₁₂ : p₁ < pβ‚‚) + {u : X β†’ E} (hu : Memβ„’p u pβ‚‚ ΞΌ) {x : X} : + maximalFunction ΞΌ 𝓑 p₁ u x < ∞ := by + sorry + +theorem snorm_maximalFunction {a : ℝ} (ha : 4 ≀ a) {l : ℝβ‰₯0} (hl : 0 < l) {p₁ pβ‚‚ : ℝβ‰₯0} + (hp₁ : 1 ≀ p₁) (hp₁₂ : p₁ < pβ‚‚) + {u : X β†’ E} (hu : AEStronglyMeasurable u ΞΌ) : + snorm (maximalFunction ΞΌ 𝓑 p₁ u Β· |>.toReal) pβ‚‚ ΞΌ ≀ + 2 ^ (2 * a) * pβ‚‚ / (pβ‚‚ - p₁) * snorm u pβ‚‚ ΞΌ := by + sorry + +theorem Memβ„’p.maximalFunction {a : ℝ} (ha : 4 ≀ a) {l : ℝβ‰₯0} (hl : 0 < l) {p₁ pβ‚‚ : ℝβ‰₯0} + (hp₁ : 1 ≀ p₁) (hp₁₂ : p₁ < pβ‚‚) + {u : X β†’ E} (hu : Memβ„’p u pβ‚‚ ΞΌ) : + Memβ„’p (maximalFunction ΞΌ 𝓑 p₁ u Β· |>.toReal) pβ‚‚ ΞΌ := by + sorry + +/-- The transformation M characterized in Proposition 2.0.6. -/ +def M (u : X β†’ β„‚) (x : X) : ℝβ‰₯0∞ := sorry + +theorem M_lt_top {a : ℝ} (ha : 4 ≀ a) {l : ℝβ‰₯0} (hl : 0 < l) {p₁ pβ‚‚ : ℝβ‰₯0} + (hp₁ : 1 ≀ p₁) (hp₁₂ : p₁ < pβ‚‚) + {u : X β†’ β„‚} (hu : AEStronglyMeasurable u ΞΌ) (hu : IsBounded (range u)) + {x : X} : M u x < ∞ := by + sorry + +theorem laverage_le_M {a : ℝ} (ha : 4 ≀ a) {l : ℝβ‰₯0} (hl : 0 < l) + {u : X β†’ β„‚} (hu : AEStronglyMeasurable u ΞΌ) (hu : IsBounded (range u)) + {z x : X} {r : ℝ} : + ⨍⁻ y, β€–u yβ€–β‚Š βˆ‚ΞΌ.restrict (ball z r) ≀ M u x := by + sorry + +theorem snorm_M_le {a : ℝ} (ha : 4 ≀ a) {l : ℝβ‰₯0} (hl : 0 < l){p₁ pβ‚‚ : ℝβ‰₯0} + (hp₁ : 1 ≀ p₁) (hp₁₂ : p₁ < pβ‚‚) + {u : X β†’ β„‚} (hu : AEStronglyMeasurable u ΞΌ) (hu : IsBounded (range u)) + {z x : X} {r : ℝ} : + snorm (fun x ↦ (M (fun x ↦ u x ^ (p₁ : β„‚)) x).toReal ^ (p₁⁻¹ : ℝ)) pβ‚‚ ΞΌ ≀ + 2 ^ (4 * a) * pβ‚‚ / (pβ‚‚ - p₁) * snorm u pβ‚‚ ΞΌ := by + sorry