diff --git a/blueprint/src/chapter/main.tex b/blueprint/src/chapter/main.tex index faf2b295..c2e2331d 100644 --- a/blueprint/src/chapter/main.tex +++ b/blueprint/src/chapter/main.tex @@ -285,7 +285,7 @@ \chapter{Proof of metric space Carleson (Thm \ref{metric space Carleson}), overv that a function from a measure space to a finite set is measurable if the pre-image of each of the elements in the range is measurable. -\begin{prop}[finitary Carleson] +\begin{proposition}[finitary Carleson] \label{finitary Carleson} \uses{discrete Carleson, grid existence, tile structure, tile sum operator} Let ${\sigma_1},\sigma_2\colon X\to \mathbb{Z}$ be measurable functions with finite range and ${\sigma_1}\leq \sigma_2$. Let $\tQ\colon X\to \Mf$ be a measurable function with finite range. Let $F,G$ be bounded Borel sets in $X$. Then there is a Borel set $G'$ in $X$ with $2\mu(G')\leq \mu(G)$ such that @@ -298,7 +298,7 @@ \chapter{Proof of metric space Carleson (Thm \ref{metric space Carleson}), overv \le \frac{2^{440a^3}}{(q-1)^4} \mu(G)^{1-\frac{1}{q}} \mu(F)^{\frac 1 q}\,. \end{equation} -\end{prop} +\end{proposition} Let measurable functions ${\sigma_1}\leq \sigma_2\colon X\to \mathbb{Z}$ with finite range be given. Let a measurable function $\tQ\colon X\to \Mf$ with finite range be given. @@ -400,7 +400,7 @@ \chapter{Proof of metric space Carleson (Thm \ref{metric space Carleson}), overv \end{equation} -\begin{prop}[discrete Carleson] +\begin{proposition}[discrete Carleson] \label{discrete Carleson} \uses{exceptional set, forest union, forest complement} Let $(\mathcal{D}, c, s)$ be a grid structure and \begin{equation*} @@ -421,7 +421,7 @@ \chapter{Proof of metric space Carleson (Thm \ref{metric space Carleson}), overv \label{disclesssim} \int_{G \setminus G'} \left| \sum_{\fp \in \fP} T_{\fp} f (x) \right| \, \mathrm{d}\mu(x) \le \frac{2^{440a^3}}{(q-1)^4} \mu(G)^{1-\frac{1}{q}} \mu(F)^{\frac{1}{q}}\,. \end{equation} -\end{prop} +\end{proposition} @@ -491,7 +491,7 @@ \chapter{Proof of metric space Carleson (Thm \ref{metric space Carleson}), overv The following proposition is proved in Section \ref{antichainboundary}. -\begin{prop}[antichain operator] +\begin{proposition}[antichain operator] \label{antichain operator} \uses{dens2 antichain,dens1 antichain} @@ -502,7 +502,7 @@ \chapter{Proof of metric space Carleson (Thm \ref{metric space Carleson}), overv \begin{equation} \le \frac{2^{150a^3}}{q-1} \dens_1(\mathfrak{A})^{\frac {q-1}{8a^4}}\dens_2(\mathfrak{A})^{\frac 1{q}-\frac 12} \|f\|_2 \|g\|_2\, . \end{equation} -\end{prop} +\end{proposition} Let $n\ge 0$. An $n$-forest is a pair $(\fU, \mathfrak{T})$ @@ -546,7 +546,7 @@ \chapter{Proof of metric space Carleson (Thm \ref{metric space Carleson}), overv The following proposition is proved in Section \ref{treesection}. -\begin{prop}[forest operator] +\begin{proposition}[forest operator] \label{forest operator} \uses{forest row decomposition,row bound,row correlation,disjoint row support} For any $n\ge 0$ and any $n$-forest $(\fU,\fT)$ we have for all $f: X \to \mathbb{C}$ with $|f| \le \mathbf{1}_F$ and all bounded $g$ with bounded support @@ -558,7 +558,7 @@ \chapter{Proof of metric space Carleson (Thm \ref{metric space Carleson}), overv 2^{432a^3}2^{-\frac{q-1}{q} n} \dens_2\left(\bigcup_{\fu\in \fU}\fT(\fu)\right)^{\frac{1}{q}-\frac{1}{2}} \|f\|_2 \|g\|_2 \,. $$ \lars{I dont understand why there was 650 here before} \rs{Track dependence on Prop 2.3, Prop 2.2, Thm 1.2. Don't delete comment till I read Section 7 completely} \lars{Changed all constants} -\end{prop} +\end{proposition} Theorem \ref{metric space Carleson} is formulated at the level of generality for general kernels satisfying the mere H\"older regularity condition \eqref{eqkernel y smooth}. On the other hand, the cancellative condition \eqref{eq vdc cond} is a testing condition against more regular, @@ -577,7 +577,7 @@ \chapter{Proof of metric space Carleson (Thm \ref{metric space Carleson}), overv \end{equation} -\begin{prop}[Holder van der Corput] +\begin{proposition}[Holder van der Corput] \label{Holder van der Corput} \uses{Lipschitz Holder approximation} Let $z\in X$ and $R>0$ and set $B=B(z,R)$. @@ -591,7 +591,7 @@ \chapter{Proof of metric space Carleson (Thm \ref{metric space Carleson}), overv (1 + d_{B}(\mfa,\mfb))^{-\frac{1}{2a^2+a^3}} \,. \end{equation} - \end{prop} + \end{proposition} We further formulate a classical Vitali covering result and maximal function estimate that we need throughout several sections. @@ -604,7 +604,7 @@ \chapter{Proof of metric space Carleson (Thm \ref{metric space Carleson}), overv \end{equation} Define further $M_{\mathcal{B}}:=M_{\mathcal{B},1}$. -\begin{prop}[Hardy Littlewood] +\begin{proposition}[Hardy Littlewood] \label{Hardy Littlewood} \uses{layer cake representation,covering separable space} Let $\mathcal{B}$ be a finite collection of balls in $X$. @@ -633,7 +633,7 @@ \chapter{Proof of metric space Carleson (Thm \ref{metric space Carleson}), overv \|M(w^{p_1})^{\frac{1}{p_1}}\|_{p_2} \le 2^{4a} \frac{p_2}{p_2-p_1}\|w\|_{p_2}\,. \end{equation} -\end{prop} +\end{proposition} This completes the overview of the proof of Theorem \ref{metric space Carleson}. diff --git a/blueprint/src/preamble/common.tex b/blueprint/src/preamble/common.tex index 882ea55a..ca7e7e2c 100644 --- a/blueprint/src/preamble/common.tex +++ b/blueprint/src/preamble/common.tex @@ -23,7 +23,7 @@ \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}[theorem]{Lemma} -\newtheorem{prop}[theorem]{Proposition} +\newtheorem{proposition}[theorem]{Proposition} \newtheorem{cor}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} @@ -34,9 +34,9 @@ \numberwithin{theorem}{section} \numberwithin{equation}{section} -\newcommand{\R}{\mathbb{R}} -\newcommand{\C}{\mathbb{C}} -\newcommand{\N}{\mathbb{N}} +\newcommand{\R}{{\mathbb{R}}} +\newcommand{\C}{{\mathbb{C}}} +\newcommand{\N}{{\mathbb{N}}} \DeclareMathOperator{\ch}{\operatorname{ch}} \DeclareMathOperator{\dens}{\operatorname{dens}} \DeclareMathOperator{\supp}{\operatorname{supp}} @@ -46,25 +46,25 @@ \DeclareMathOperator{\bd}{\operatorname{bd}} \DeclareMathOperator*{\esssup}{\operatorname{ess\,sup}} -\newcommand{\fp}{\mathfrak p} -\newcommand{\fP}{\mathfrak P} -\newcommand{\fu}{\mathfrak u} -\newcommand{\fU}{\mathfrak U} -\newcommand{\fv}{\mathfrak v} -\newcommand{\fq}{\mathfrak q} -\newcommand{\fQ}{\mathfrak Q} -\newcommand{\fT}{\mathfrak T} -\newcommand{\fL}{\mathfrak L} -\newcommand{\fC}{\mathfrak C} -\newcommand{\pc}{\mathrm{c}} -\newcommand{\ps}{\mathrm{s}} +\newcommand{\fp}{{\mathfrak p}} +\newcommand{\fP}{{\mathfrak P}} +\newcommand{\fu}{{\mathfrak u}} +\newcommand{\fU}{{\mathfrak U}} +\newcommand{\fv}{{\mathfrak v}} +\newcommand{\fq}{{\mathfrak q}} +\newcommand{\fQ}{{\mathfrak Q}} +\newcommand{\fT}{{\mathfrak T}} +\newcommand{\fL}{{\mathfrak L}} +\newcommand{\fC}{{\mathfrak C}} +\newcommand{\pc}{{\mathrm{c}}} +\newcommand{\ps}{{\mathrm{s}}} \newcommand{\AD}{{\bf s}} -\newcommand{\fc}{\Omega} -\newcommand{\borel}{\mathcal{E}} -\newcommand{\borelb}{\mathcal{G}} -\renewcommand{\sc}{\mathcal{I}} % todo: this doesn't render properly in the web version, probably rename +\newcommand{\fc}{{\Omega}} +\newcommand{\borel}{{\mathcal{E}}} +\newcommand{\borelb}{{\mathcal{G}}} +\renewcommand{\sc}{{\mathcal{I}}} % todo: this doesn't render properly in the web version, probably rename \newcommand{\tQ}{{Q}} -\newcommand{\mfa}{\vartheta} -\newcommand{\mfb}{\theta} -\newcommand{\Mf}{\Theta} -\newcommand{\fcc}{\mathcal{Q}} +\newcommand{\mfa}{{\vartheta}} +\newcommand{\mfb}{{\theta}} +\newcommand{\Mf}{{\Theta}} +\newcommand{\fcc}{{\mathcal{Q}}}