From 4be01dde5dc70536cecf3ed624b5ebd0d5facc6d Mon Sep 17 00:00:00 2001 From: Floris van Doorn Date: Fri, 27 Sep 2024 16:24:50 +0200 Subject: [PATCH] simplify proof in Misc.lean --- Carleson/ToMathlib/Misc.lean | 16 +++------------- 1 file changed, 3 insertions(+), 13 deletions(-) diff --git a/Carleson/ToMathlib/Misc.lean b/Carleson/ToMathlib/Misc.lean index 46b4729..f46bacd 100644 --- a/Carleson/ToMathlib/Misc.lean +++ b/Carleson/ToMathlib/Misc.lean @@ -280,6 +280,7 @@ namespace EquivalenceOn variable {α : Type*} {r : α → α → Prop} {s : Set α} {hr : EquivalenceOn r s} {x y : α} variable (hr) in +/-- The setoid defined from an equivalence relation on a set. -/ protected def setoid : Setoid s where r x y := r x y iseqv := { @@ -327,7 +328,7 @@ lemma out_inj' (hx : x ∈ s) (hy : y ∈ s) (h : r (hr.out x) (hr.out y)) : hr. all_goals simpa variable (hr) in -/-- The set of representatives. -/ +/-- The set of representatives of an equivalence relation on a set. -/ def reprs : Set α := hr.out '' s lemma out_mem_reprs (hx : x ∈ s) : hr.out x ∈ hr.reprs := ⟨x, hx, rfl⟩ @@ -348,18 +349,7 @@ namespace Set.Finite lemma biSup_eq {α : Type*} {ι : Type*} [CompleteLinearOrder α] {s : Set ι} (hs : s.Finite) (hs' : s.Nonempty) (f : ι → α) : ∃ i ∈ s, ⨆ j ∈ s, f j = f i := by - induction' s, hs using dinduction_on with a s _ _ ihs hf - · simp at hs' - rw [iSup_insert] - by_cases hs : s.Nonempty - · by_cases ha : f a ⊔ ⨆ x ∈ s, f x = f a - · use a, mem_insert a s - · obtain ⟨i, hi⟩ := ihs hs - use i, Set.mem_insert_of_mem a hi.1 - rw [← hi.2, sup_eq_right] - simp only [sup_eq_left, not_le] at ha - exact ha.le - · simpa using Or.inl fun i hi ↦ (hs (nonempty_of_mem hi)).elim + simpa [sSup_image, eq_comm] using hs'.image f |>.csSup_mem (hs.image f) end Set.Finite