From 1727a1d44c50cb51bb2afa0b50342da4d3443c82 Mon Sep 17 00:00:00 2001 From: Pietro Monticone <38562595+pitmonticone@users.noreply.github.com> Date: Thu, 31 Oct 2024 01:10:46 +0100 Subject: [PATCH] SublinearOn.indicator --- Carleson/RealInterpolation.lean | 13 +++++++------ 1 file changed, 7 insertions(+), 6 deletions(-) diff --git a/Carleson/RealInterpolation.lean b/Carleson/RealInterpolation.lean index 037181f..89ac45d 100644 --- a/Carleson/RealInterpolation.lean +++ b/Carleson/RealInterpolation.lean @@ -3222,15 +3222,16 @@ lemma indicator {T : (α → E₁) → α' → E₂} {P : (α → E₁) → Prop (sl : SublinearOn T P A ν) : SublinearOn (fun u x ↦ (S.indicator (fun y ↦ T u y) x)) P A ν := by refine ⟨SubadditiveOn.indicator sl.1 S, fun f c hf hc ↦ ?_⟩ - by_cases hx : x ∈ S <;> simp [hx, congr_fun (sl.2 f c hf hc) x] + filter_upwards [sl.2 f c hf hc] with x hx + by_cases h : x ∈ S <;> simp [h, hx] -- If `T` is constant in the second argument (but not necessarily the first) and satisfies -- certain requirements, then `SublinearOn T P 1` -lemma const (t : (α → E₁) → E₂) (P : (α → E₁) → Prop) - (h_add : ∀ {f g}, P f → P g → ‖t (f + g)‖ ≤ ‖t f‖ + ‖t g‖) - (h_smul : ∀ f {c : ℝ}, P f → c ≥ 0 → t (c • f) = c • t f) : - SublinearOn (fun u (_ : α') ↦ t u) P 1 ν := by - refine ⟨SubadditiveOn.const t P h_add, fun f c hf hc ↦ funext (fun x ↦ ?_)⟩ +lemma const (T : (α → E₁) → E₂) (P : (α → E₁) → Prop) + (h_add : ∀ {f g}, P f → P g → ‖T (f + g)‖ ≤ ‖T f‖ + ‖T g‖) + (h_smul : ∀ f {c : ℝ}, P f → c ≥ 0 → T (c • f) = c • T f) : + SublinearOn (fun u (_ : α') ↦ T u) P 1 ν := by + refine ⟨SubadditiveOn.const T P h_add, fun f c hf hc ↦ ?_⟩ simpa using h_smul f hf hc end SublinearOn