- Implement mixup trick.
- Add a new tool to create TensorRT engine from ONNX, run inference and verify outputs in Python.
- Implement mixup and provide configs of training ResNet50 using mixup. (#160)
- Add
Shear
pipeline for data augmentation. (#163) - Add
Translate
pipeline for data augmentation. (#165) - Add
tools/onnx2tensorrt.py
as a tool to create TensorRT engine from ONNX, run inference and verify outputs in Python. (#153)
- Add
--eval-options
intools/test.py
to support eval options override, matching the behavior of other open-mmlab projects. (#158) - Support showing and saving painted results in
mmcls.apis.test
andtools/test.py
, matching the behavior of other open-mmlab projects. (#162)
- Fix configs for VGG, replace checkpoints converted from other repos with the ones trained by ourselves and upload the missing logs in the model zoo. (#161)
- Support multi-label task.
- Support more flexible metrics settings.
- Fix bugs.
- Add evaluation metrics: mAP, CP, CR, CF1, OP, OR, OF1 for multi-label task. (#123)
- Add BCE loss for multi-label task. (#130)
- Add focal loss for multi-label task. (#131)
- Support PASCAL VOC 2007 dataset for multi-label task. (#134)
- Add asymmetric loss for multi-label task. (#132)
- Add analyze_results.py to select images for success/fail demonstration. (#142)
- Support new metric that calculates the total number of occurrences of each label. (#143)
- Support class-wise evaluation results. (#143)
- Add thresholds in eval_metrics. (#146)
- Add heads and a baseline config for multilabel task. (#145)
- Remove the models with 0 checkpoint and ignore the repeated papers when counting papers to gain more accurate model statistics. (#135)
- Add tags in README.md. (#137)
- Fix optional issues in docstring. (#138)
- Update stat.py to classify papers. (#139)
- Fix mismatched columns in README.md. (#150)
- Fix test.py to support more evaluation metrics. (#155)
- Fix bug in VGG weight_init. (#140)
- Fix bug in 2 ResNet configs in which outdated heads were used. (#147)
- Fix bug of misordered height and width in
RandomCrop
andRandomResizedCrop
. (#151) - Fix missing
meta_keys
inCollect
. (#149 & #152)
- Add more evaluation metrics.
- Fix bugs.
- Remove installation of MMCV from requirements. (#90)
- Add 3 evaluation metrics: precision, recall and F-1 score. (#93)
- Allow config override during testing and inference with
--options
. (#91 & #96)
- Use
build_runner
to make runners more flexible. (#54) - Support to get category ids in
BaseDataset
. (#72) - Allow
CLASSES
override duringBaseDateset
initialization. (#85) - Allow input image as ndarray during inference. (#87)
- Optimize MNIST config. (#98)
- Add config links in model zoo documentation. (#99)
- Use functions from MMCV to collect environment. (#103)
- Refactor config files so that they are now categorized by methods. (#116)
- Add README in config directory. (#117)
- Add model statistics. (#119)
- Refactor documentation in consistency with other MM repositories. (#126)
- Add missing
CLASSES
argument to dataset wrappers. (#66) - Fix slurm evaluation error during training. (#69)
- Resolve error caused by shape in
Accuracy
. (#104) - Fix bug caused by extremely insufficient data in distributed sampler.(#108)
- Fix bug in
gpu_ids
in distributed training. (#107) - Fix bug caused by extremely insufficient data in collect results during testing (#114)
- Support new method: ResNeSt and VGG.
- Support new dataset: CIFAR10.
- Provide new tools to do model inference, model conversion from pytorch to onnx.
- Add model inference. (#16)
- Add pytorch2onnx. (#20)
- Add PIL backend for transform
Resize
. (#21) - Add ResNeSt. (#25)
- Add VGG and its pretained models. (#27)
- Add CIFAR10 configs and models. (#38)
- Add albumentations transforms. (#45)
- Visualize results on image demo. (#58)
- Replace urlretrieve with urlopen in dataset.utils. (#13)
- Resize image according to its short edge. (#22)
- Update ShuffleNet config. (#31)
- Update pre-trained models for shufflenet_v2, shufflenet_v1, se-resnet50, se-resnet101. (#33)
- Fix init_weights in
shufflenet_v2.py
. (#29) - Fix the parameter
size
in test_pipeline. (#30) - Fix the parameter in cosine lr schedule. (#32)
- Fix the convert tools for mobilenet_v2. (#34)
- Fix crash in CenterCrop transform when image is greyscale (#40)
- Fix outdated configs. (#53)