forked from cloudflare/cbpfc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cbpfc.go
1055 lines (869 loc) · 29.8 KB
/
cbpfc.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Package cbpfc implements a cBPF (classic BPF) to eBPF
// (extended BPF, not be confused with cBPF extensions) compiler.
//
// cbpfc can compile cBPF filters to:
// - C, which can be compiled to eBPF with Clang
// - eBPF
//
// Both the C and eBPF output are intended to be accepted by the kernel verifier:
// - All packet loads are guarded with runtime packet length checks
// - RegA and RegX are zero initialized as required
// - Division by zero is guarded by runtime checks
//
// The generated C / eBPF is intended to be embedded into a larger C / eBPF program.
package cbpfc
import (
"fmt"
"sort"
"github.com/pkg/errors"
"golang.org/x/net/bpf"
)
// maxPacketOffset is the maximum packet offset the verifier allows.
// https://elixir.bootlin.com/linux/v5.14.8/source/kernel/bpf/verifier.c#L3223
const maxPacketOffset = 0xFFFF
// Map conditionals to their inverse
var condToInverse = map[bpf.JumpTest]bpf.JumpTest{
bpf.JumpEqual: bpf.JumpNotEqual,
bpf.JumpNotEqual: bpf.JumpEqual,
bpf.JumpGreaterThan: bpf.JumpLessOrEqual,
bpf.JumpLessThan: bpf.JumpGreaterOrEqual,
bpf.JumpGreaterOrEqual: bpf.JumpLessThan,
bpf.JumpLessOrEqual: bpf.JumpGreaterThan,
bpf.JumpBitsSet: bpf.JumpBitsNotSet,
bpf.JumpBitsNotSet: bpf.JumpBitsSet,
}
// pos stores the absolute position of a cBPF instruction
type pos uint
// skips store cBPF jumps, which are relative
type skip uint
// instruction wraps a bpf instruction with it's
// original position
type instruction struct {
bpf.Instruction
id pos
}
func (i instruction) String() string {
return fmt.Sprintf("%d: %v", i.id, i.Instruction)
}
// block contains a linear flow on instructions:
// - Nothing jumps into the middle of a block
// - Nothing jumps out of the middle of a block
//
// A block may start or end with any instruction, as any instruction
// can be the target of a jump.
//
// A block also knows what blocks it jumps to. This forms a DAG of blocks.
type block struct {
// Should not be directly modified, instead copy instructions to new slice
insns []instruction
// Map of absolute instruction positions the last instruction
// of this block can jump to, to the corresponding block
jumps map[pos]*block
// id of the instruction that started this block
// Unique, but not guaranteed to match insns[0].id after blocks are modified
id pos
}
// newBlock creates a block with copy of insns
func newBlock(insns []instruction) *block {
return &block{
insns: insns,
jumps: make(map[pos]*block),
id: insns[0].id,
}
}
func (b *block) Label() string {
return fmt.Sprintf("block_%d", b.id)
}
func (b *block) skipToPos(s skip) pos {
return b.last().id + 1 + pos(s)
}
// Get the target block of a skip
func (b *block) skipToBlock(s skip) *block {
return b.jumps[b.skipToPos(s)]
}
func (b *block) last() instruction {
return b.insns[len(b.insns)-1]
}
// packetGuard is a "fake" cBPF instruction
// that checks packet bounds before data is read from the packet.
type packetGuard interface {
bpf.Instruction
// Extend returns a guard that is the union of the current guard and o.
extend(o packetGuard) packetGuard
// Restrict returns a guard that is the intersection of the current guard and o.
restrict(o packetGuard) packetGuard
// Adjust any instructions that are covered by this guard as required.
adjustInsns(insns []instruction)
}
// packetGuardAbsolute checks packet bounds for absolute packet loads (constant offset).
// We only need to track the last / greatest byte read to ensure it isn't past the packet end.
type packetGuardAbsolute struct {
// The furthest (exclusive) byte read.
end int32
}
func newPacketGuardAbsolute(off uint32, size int) packetGuardAbsolute {
if off > maxPacketOffset {
panic("can't create absolute packet guard for offset")
}
// Absolute offsets are limited to maxPacketOffset so this can't overflow.
return packetGuardAbsolute{int32(off) + int32(size)}
}
func (a packetGuardAbsolute) extend(o packetGuard) packetGuard {
n := a
if b := o.(packetGuardAbsolute); b.end > a.end {
n.end = b.end
}
return n
}
func (a packetGuardAbsolute) restrict(o packetGuard) packetGuard {
n := a
if b := o.(packetGuardAbsolute); b.end < a.end {
n.end = b.end
}
return n
}
// We don't need to adjust instructions for absolute guards.
func (a packetGuardAbsolute) adjustInsns(insns []instruction) {}
// Assemble implements the Instruction Assemble method.
func (p packetGuardAbsolute) Assemble() (bpf.RawInstruction, error) {
return bpf.RawInstruction{}, errors.Errorf("unsupported")
}
// packetGuardIndirect checks packet bounds for indirect packet loads (RegX + constant offset).
// RegX and offset are both allowed to be negative, but RegX + Offset must be >= 0 (the verifier does not allow
// adding negative offsets to packet pointers).
//
// This requires tracking both the first and last byte read (relative to RegX) to check:
// - RegX + start >= 0
// - RegX + end < maxPacketOffset
// - packet_start + RegX + end < packet_end
//
// Bounds / range information is propagated in the verifier by copying a packet pointer,
// adding a constant (which yields a "derived" packet pointer with the same ID), and checking it against the packet_end.
// Subsequent LoadIndirects that are covered by this guard need to use a packet pointer with same ID as the guard to
// take advantage of the bounds.
// Ideally we would use packet_start + RegX and let each LoadIndirect instruction add its own offset,
// but the verifier doesn't allow the use of packet pointers with a negative offset (even if the offset
// would make the read positive: https://elixir.bootlin.com/linux/v5.14.12/source/kernel/bpf/verifier.c#L3287)
//
// So instead we check:
// - RegX + start >= 0
// - RegX + start < maxPacketOffset - length
// - packet_start + RegX + start + length < packet_end
// This lets us reuse packet_start + RegX + start as the packet pointer for LoadIndirect,
// but means we need to rewrite the offsets of LoadIndirect instructions covered by this guard to subtract length.
type packetGuardIndirect struct {
// First byte read (inclusive).
start int32
// Last byte read (exclusive).
// int64 to avoid overflows with INT32_MAX + size
end int64
}
func newPacketGuardIndirect(off uint32, size int) packetGuardIndirect {
// cBPF offsets are uint32, but are signed in reality
// LoadIndirect offsets are encoded as uint32 by x/net/bpf, but are signed in reality.
// Unlike LoadAbsolute, restrictions only apply to RegX + Offset and not Offset alone,
// so we have to allow INT32_MAX / INT32_MIN offsets.
return packetGuardIndirect{
start: int32(off),
end: int64(int32(off)) + int64(size),
}
}
func (a packetGuardIndirect) extend(o packetGuard) packetGuard {
b := o.(packetGuardIndirect)
// A 0 guard means no guard, we shouldn't extend it to cover {0,0}
if a == (packetGuardIndirect{}) {
return b
}
if b == (packetGuardIndirect{}) {
return a
}
n := a
if b.start < a.start {
n.start = b.start
}
if b.end > a.end {
n.end = b.end
}
return n
}
func (a packetGuardIndirect) restrict(o packetGuard) packetGuard {
b := o.(packetGuardIndirect)
// A 0 guard means no guard, that restricts everything to no guard.
if a == (packetGuardIndirect{}) || b == (packetGuardIndirect{}) {
return packetGuardIndirect{}
}
n := a
if b.start > a.start {
n.start = b.start
}
if b.end < a.end {
n.end = b.end
}
return n
}
// int32(RegX) + p.start must be < to maxStartOffset().
// This checks that it is positive, and int32(RegX) + p.end doesn't exceed maxPacketOffset.
// Returns 0 (check will always be false) if there is no way for the start and end of the guard to be < maxPacketOffset.
func (p packetGuardIndirect) maxStartOffset() int32 {
length := p.end - int64(p.start)
// If length exceeds maxPacketOffset, there's no way for RegX + start >= 0 and RegX + end < maxPacketOffset.
// Return 0 so the check fails, and we return noMatch.
if length > maxPacketOffset {
return 0
}
// +1 as it needs to be strictly less than.
// This lets us return 0 above to get noMatch.
return int32(maxPacketOffset) - int32(length) + 1
}
// packet_start + (int32(x) + p.start) + p.length() must be <= packet_end.
// This lets us reuse the (int32(x) + p.start) from the maxStartOffset() check, to keep the bounds info.
func (p packetGuardIndirect) length() int32 {
// This can overflow, but it doesn't matter as we'll already have checked maxStartOffset()
// and caught the overflow there.
return int32(p.end - int64(p.start))
}
// Once we've determined the guard that applies for a given set of insns,
// asjust the offsets so they're relative to the smallest / start of the guard.
func (p packetGuardIndirect) adjustInsns(insns []instruction) {
for i := range insns {
switch insn := insns[i].Instruction.(type) {
case bpf.LoadIndirect:
insns[i].Instruction = bpf.LoadIndirect{
Off: uint32(int32(insn.Off) - p.start),
Size: insn.Size,
}
}
}
}
// Assemble implements the Instruction Assemble method.
func (p packetGuardIndirect) Assemble() (bpf.RawInstruction, error) {
return bpf.RawInstruction{}, errors.Errorf("unsupported")
}
// checksXNotZero is a "fake" instruction
// that returns no match if X is 0
type checkXNotZero struct {
}
// Assemble implements the Instruction Assemble method.
func (c checkXNotZero) Assemble() (bpf.RawInstruction, error) {
return bpf.RawInstruction{}, errors.Errorf("unsupported")
}
// compile compiles a cBPF program to an ordered slice of blocks, with:
// - Registers zero initialized as required
// - Required packet access guards added
// - JumpIf and JumpIfX instructions normalized (see normalizeJumps)
func compile(insns []bpf.Instruction) ([]*block, error) {
err := validateInstructions(insns)
if err != nil {
return nil, err
}
instructions := toInstructions(insns)
normalizeJumps(instructions)
// Split into blocks
blocks, err := splitBlocks(instructions)
if err != nil {
return nil, errors.Wrapf(err, "unable to compute blocks")
}
// Initialize registers
err = initializeMemory(blocks)
if err != nil {
return nil, err
}
// Check we don't divide by zero
err = addDivideByZeroGuards(blocks)
if err != nil {
return nil, err
}
rewriteLargePacketOffsets(&blocks)
// Guard packet loads
addAbsolutePacketGuards(blocks)
addIndirectPacketGuards(blocks)
return blocks, nil
}
// validateInstructions checks the instructions are valid, and we support them
func validateInstructions(insns []bpf.Instruction) error {
// Can't do anything meaningful with no instructions
if len(insns) == 0 {
return errors.New("can't compile 0 instructions")
}
for pc, insn := range insns {
// Assemble does some input validation
_, err := insn.Assemble()
if err != nil {
return errors.Errorf("can't assemble instruction %d: %v", pc, insn)
}
switch i := insn.(type) {
case bpf.RawInstruction:
return errors.Errorf("unsupported instruction %d: %v", pc, insn)
// Negative constant offsets are used for extensions (and if they're supported, x/net/bpf will parse them)
// and other packet addressing modes we don't support: https://elixir.bootlin.com/linux/v5.14.10/source/kernel/bpf/core.c#L65
case bpf.LoadAbsolute:
if int32(i.Off) < 0 {
return errors.Errorf("LoadAbsolute negative offset %v", int32(i.Off))
}
case bpf.LoadMemShift:
if int32(i.Off) < 0 {
return errors.Errorf("LoadMemShift negative offset %v", int32(i.Off))
}
case bpf.LoadExtension:
switch i.Num {
case bpf.ExtLen:
break
default:
return errors.Errorf("unsupported BPF extension %d: %v", pc, insn)
}
}
}
return nil
}
func toInstructions(insns []bpf.Instruction) []instruction {
instructions := make([]instruction, len(insns))
for pc, insn := range insns {
instructions[pc] = instruction{
Instruction: insn,
id: pos(pc),
}
}
return instructions
}
// normalizeJumps normalizes conditional jumps to always use skipTrue:
// Jumps that only use skipTrue (skipFalse == 0) are unchanged.
// Jumps that use both skipTrue and skipFalse are unchanged.
// Jumps that only use skipFalse (skipTrue == 0) are inverted to only use skipTrue.
func normalizeJumps(insns []instruction) {
for pc := range insns {
switch i := insns[pc].Instruction.(type) {
case bpf.JumpIf:
if !shouldInvert(i.SkipTrue, i.SkipFalse) {
continue
}
insns[pc].Instruction = bpf.JumpIf{Cond: condToInverse[i.Cond], Val: i.Val, SkipTrue: i.SkipFalse, SkipFalse: i.SkipTrue}
case bpf.JumpIfX:
if !shouldInvert(i.SkipTrue, i.SkipFalse) {
continue
}
insns[pc].Instruction = bpf.JumpIfX{Cond: condToInverse[i.Cond], SkipTrue: i.SkipFalse, SkipFalse: i.SkipTrue}
}
}
}
// Check if a conditional jump should be inverted
func shouldInvert(skipTrue, skipFalse uint8) bool {
return skipTrue == 0 && skipFalse != 0
}
// Traverse instructions until end of first block. Target is absolute start of block.
// Return block-relative jump targets
func visitBlock(insns []instruction, target pos) (*block, []skip) {
for pc, insn := range insns {
// Relative jumps from this instruction
var skips []skip
switch i := insn.Instruction.(type) {
case bpf.Jump:
skips = []skip{skip(i.Skip)}
case bpf.JumpIf:
skips = []skip{skip(i.SkipTrue), skip(i.SkipFalse)}
case bpf.JumpIfX:
skips = []skip{skip(i.SkipTrue), skip(i.SkipFalse)}
case bpf.RetA, bpf.RetConstant:
// No extra targets to visit
default:
// Regular instruction, next please!
continue
}
// every insn including this one
return newBlock(insns[:pc+1]), skips
}
// Try to fall through to next block
return newBlock(insns), []skip{0}
}
// splitBlocks splits the cBPF into an ordered list of blocks.
//
// The blocks are preserved in the order they are found as this guarantees that
// a block only targets later blocks (cBPF jumps are positive, relative offsets).
// This also mimics the layout of the original cBPF, which is good for debugging.
func splitBlocks(instructions []instruction) ([]*block, error) {
// Blocks we've visited already
blocks := []*block{}
// map of targets to blocks that target them
// target 0 is for the base case
targets := map[pos][]*block{
0: nil,
}
// As long as we have un visited targets
for len(targets) > 0 {
sortedTargets := sortTargets(targets)
// Get the first one (not really breadth first, but close enough!)
target := sortedTargets[0]
end := len(instructions)
// If there's a next target, ensure we stop before it
if len(sortedTargets) > 1 {
end = int(sortedTargets[1])
}
next, nextSkips := visitBlock(instructions[target:end], target)
// Add skips to our list of things to visit
for _, s := range nextSkips {
// Convert relative skip to absolute pos
t := next.skipToPos(s)
if t >= pos(len(instructions)) {
return nil, errors.Errorf("instruction %v flows past last instruction", next.last())
}
targets[t] = append(targets[t], next)
}
jmpBlocks := targets[target]
// Mark all the blocks that jump to the block we've just visited as doing so
for _, jmpBlock := range jmpBlocks {
jmpBlock.jumps[target] = next
}
blocks = append(blocks, next)
// Target is now a block!
delete(targets, target)
}
return blocks, nil
}
// sortTargets sorts the target positions (keys), lowest first
func sortTargets(targets map[pos][]*block) []pos {
keys := make([]pos, len(targets))
i := 0
for k := range targets {
keys[i] = k
i++
}
sort.Slice(keys, func(i, j int) bool {
return keys[i] < keys[j]
})
return keys
}
// addDivideByZeroGuards adds runtime guards / checks to ensure
// the program returns no match when it would otherwise divide by zero.
func addDivideByZeroGuards(blocks []*block) error {
isDivision := func(op bpf.ALUOp) bool {
return op == bpf.ALUOpDiv || op == bpf.ALUOpMod
}
// Is RegX known to be none 0 at the start of each block
// We can't divide by RegA, only need to check RegX.
xNotZero := make(map[*block]bool)
for _, block := range blocks {
notZero := xNotZero[block]
// newInsns to replace those in the block
newInsns := []instruction{}
for _, insn := range block.insns {
switch i := insn.Instruction.(type) {
case bpf.ALUOpConstant:
if isDivision(i.Op) && i.Val == 0 {
return errors.Errorf("instruction %v divides by 0", insn)
}
case bpf.ALUOpX:
if isDivision(i.Op) && !notZero {
newInsns = append(newInsns, instruction{Instruction: checkXNotZero{}})
notZero = true
}
}
newInsns = append(newInsns, insn)
// check if X clobbered - check is invalidated
if memWrites(insn.Instruction).regs[bpf.RegX] {
notZero = false
}
}
block.insns = newInsns
// update the status of every block this one jumps to
for _, target := range block.jumps {
targetNotZero, ok := xNotZero[target]
if !ok {
xNotZero[target] = notZero
continue
}
// x needs to be not zero from every possible path
xNotZero[target] = targetNotZero && notZero
}
}
return nil
}
// rewriteLargePacketOffsets replaces packet loads that have constant offsets
// greater than the verifier allows with return 0 (no match) to mimick
// what the kernel does for cBPF.
// While cBPF allows bigger offsets, in practice they cannot match a packet.
// This doesn't work for LoadIndirect as the actual offset is LoadIndirect.Off + RegX,
// we instead rely on runtime checks (see packetGuardIndirect).
func rewriteLargePacketOffsets(blocks *[]*block) {
// All blocks are reachable when we start.
// But some blocks can become unreachable once we've rewritten load instructions to returns.
// The verifier rejects unreachable instructions, track how many other blocks go to a given block
// so we can remove newly unreachable blocks.
blockRefs := make(map[*block]int)
var newBlocks []*block
for i, block := range *blocks {
// No other blocks jump into this block anymore, skip it.
if i != 0 && blockRefs[block] == 0 {
continue
}
newBlocks = append(newBlocks, block)
for _, insn := range block.insns {
var (
offset uint32
size int
)
// LoadIndirect is handled by runtime checks as only RegX + offset is subject to maxPacketOffset.
switch i := insn.Instruction.(type) {
case bpf.LoadAbsolute:
offset = i.Off
size = i.Size
case bpf.LoadMemShift:
offset = i.Off
size = 1
default:
continue
}
// A packetGuard will have to add size to the packet pointer, so it counts towards the limit.
// We've already validate offset isn't signed, so this can't overflow.
if offset+uint32(size) > maxPacketOffset {
// Mimick an out of bounds load in cBPF, returning 0 / no match.
// The block now unconditionally returns, the other instructions in it don't matter.
block.insns = []instruction{
{Instruction: bpf.RetConstant{Val: 0}},
}
// This block doesn't jump to any others anymore.
block.jumps = nil
break
}
}
// cBPF can't jump backwards, so we can build this up as we go.
for _, target := range block.jumps {
blockRefs[target]++
}
}
*blocks = newBlocks
}
// addAbsolutePacketGuard adds required packet guards for absolute packet accesses to blocks.
func addAbsolutePacketGuards(blocks []*block) {
addPacketGuards(blocks, packetGuardOpts{
requiredGuard: func(insns []instruction) requiredGuard {
var biggestGuard packetGuard = packetGuardAbsolute{}
for _, insn := range insns {
switch i := insn.Instruction.(type) {
case bpf.LoadAbsolute:
biggestGuard = biggestGuard.extend(newPacketGuardAbsolute(i.Off, i.Size))
case bpf.LoadMemShift:
biggestGuard = biggestGuard.extend(newPacketGuardAbsolute(i.Off, 1))
}
}
// Guard covers all instructions.
return requiredGuard{
guard: biggestGuard,
alwaysValid: true,
}
},
zeroGuard: func() packetGuard {
return packetGuardAbsolute{}
},
})
}
// addIndirectPacketGuard adds required packet guards for indirect packet accesses to blocks.
func addIndirectPacketGuards(blocks []*block) {
addPacketGuards(blocks, packetGuardOpts{
requiredGuard: func(insns []instruction) requiredGuard {
var (
insnCount int
biggestGuard packetGuard = packetGuardIndirect{}
)
for _, insn := range insns {
insnCount++
switch i := insn.Instruction.(type) {
case bpf.LoadIndirect:
biggestGuard = biggestGuard.extend(newPacketGuardIndirect(i.Off, i.Size))
}
// Check if we clobbered x - this invalidates the guard
if memWrites(insn.Instruction).regs[bpf.RegX] {
return requiredGuard{
guard: biggestGuard,
validForInsns: insnCount,
}
}
}
return requiredGuard{
guard: biggestGuard,
alwaysValid: true,
}
},
zeroGuard: func() packetGuard {
return packetGuardIndirect{}
},
})
}
type packetGuardOpts struct {
// requiredGuard returns the packetGuard needed by insns, and what insns it is valid for.
requiredGuard func(insns []instruction) requiredGuard
// zeroGuard returns an empty guard of the right type.
zeroGuard func() packetGuard
}
type requiredGuard struct {
guard packetGuard
// The guard covers all the requested instructions,
// and is still valid afterwards.
alwaysValid bool
// The guard covers n instructions,
// and isn't valid for the subsequent n+1: instructions (eg RegX was clobbered for indirect guards).
validForInsns int
}
// addPacketGuards adds packet guards as required.
//
// Traversing the DAG of blocks (by visiting the blocks a block jumps to),
// we know all packet guards that exist at the start of a given block.
// We can check if the block requires a longer / bigger guard than
// the shortest / least existing guard.
func addPacketGuards(blocks []*block, opts packetGuardOpts) {
// Guards in effect at the start of each block
// Can't jump backwards so we only need to traverse blocks once
guards := make(map[*block][]packetGuard)
for _, block := range blocks {
blockGuard := addBlockGuards(block, leastGuard(opts.zeroGuard(), guards[block]), opts)
for _, target := range block.jumps {
guards[target] = append(guards[target], blockGuard)
}
}
}
// addBlockGuards add the guards required for the instructions in block.
func addBlockGuards(block *block, currentGuard packetGuard, opts packetGuardOpts) packetGuard {
insns := block.insns
block.insns = nil
for len(insns) != 0 {
required := opts.requiredGuard(insns)
// Need a bigger guard for these insns. Don't use the bigger guard on it's own,
// extend the current one so we keep as much information as we have.
if newGuard := currentGuard.extend(required.guard); newGuard != currentGuard {
currentGuard = newGuard
// Last guard we need for this block -> what our children / target blocks will start with
if required.alwaysValid {
// If packets must go through a bigger guard (guaranteed guard) to match, we can use the guaranteed guard here,
// without changing the return value of the program:
// - packets smaller than the guaranteed guard cannot match anyways, we can safely reject them earlier
// - packets bigger than the guaranteed guard won't be affected by it
currentGuard = currentGuard.extend(guaranteedGuard(block.jumps, opts))
}
block.insns = append(block.insns, instruction{Instruction: currentGuard})
}
coveredInsns := insns
if !required.alwaysValid {
coveredInsns = insns[:required.validForInsns]
}
currentGuard.adjustInsns(coveredInsns)
block.insns = append(block.insns, coveredInsns...)
if required.alwaysValid {
// Guard covers remainder of block, and is still valid at the end.
return currentGuard
} else {
// Guard isn't valid anymore.
currentGuard = opts.zeroGuard()
insns = insns[required.validForInsns:]
}
}
return currentGuard
}
// guaranteedGuard performs a recursive depth first search of blocks in target to determine
// the greatest packet guard that must be made for a packet to match
//
// If the DAG of blocks needs these packet guards:
//
// [4]
// / \
// false [6]
// / \
// true [8]
// / \
// false true
//
// A packet can only match ("true") by going through guards 4 and 6. It does not have to go through guard 8.
// guaranteedGuard would return 6.
func guaranteedGuard(targets map[pos]*block, opts packetGuardOpts) packetGuard {
// Inner implementation - Uses memoization
return guaranteedGuardCached(targets, opts, make(map[*block]packetGuard))
}
// 'cache' is used in order to not calculate guard more than once for the same block.
func guaranteedGuardCached(targets map[pos]*block, opts packetGuardOpts, cache map[*block]packetGuard) packetGuard {
targetGuards := []packetGuard{}
for _, target := range targets {
// Block can't match the packet, ignore it
if blockNeverMatches(target) {
continue
}
if guard, ok := cache[target]; ok {
targetGuards = append(targetGuards, guard)
continue
}
required := opts.requiredGuard(target.insns)
// Guard invalidated by block, stop exploring
if !required.alwaysValid {
targetGuards = append(targetGuards, required.guard)
continue
}
guard := required.guard.extend(guaranteedGuardCached(target.jumps, opts, cache))
cache[target] = guard
targetGuards = append(targetGuards, guard)
}
return leastGuard(opts.zeroGuard(), targetGuards)
}
// leastGuard returns the smallest guard from guards.
// zero if there are no guards.
func leastGuard(zero packetGuard, guards []packetGuard) packetGuard {
least := zero
for i, guard := range guards {
if i == 0 {
least = guard
} else {
least = least.restrict(guard)
}
}
return least
}
// blockNeverMatches returns true IFF the insns in block will never match the input packet
func blockNeverMatches(block *block) bool {
for _, insn := range block.insns {
switch i := insn.Instruction.(type) {
case bpf.RetConstant:
if i.Val == 0 {
return true
}
}
}
return false
}
// memStatus represents a context defined status of registers & scratch
type memStatus struct {
// indexed by bpf.Register
regs [2]bool
scratch [16]bool
}
// merge merges this status with the other by applying policy to regs and scratch
func (r memStatus) merge(other memStatus, policy func(this, other bool) bool) memStatus {
newStatus := memStatus{}
for i := range newStatus.regs {
newStatus.regs[i] = policy(r.regs[i], other.regs[i])
}
for i := range newStatus.scratch {
newStatus.scratch[i] = policy(r.scratch[i], other.scratch[i])
}
return newStatus
}
// and merges this status with the other by logical AND
func (r memStatus) and(other memStatus) memStatus {
return r.merge(other, func(this, other bool) bool {
return this && other
})
}
// and merges this status with the other by logical OR
func (r memStatus) or(other memStatus) memStatus {
return r.merge(other, func(this, other bool) bool {
return this || other
})
}
// initializeMemory zero initializes all the registers that the BPF program reads from before writing to. Returns an error if any scratch memory is used uninitialized.
func initializeMemory(blocks []*block) error {
// memory initialized at the start of each block
statuses := make(map[*block]memStatus)
// uninitialized memory used so far
uninitialized := memStatus{}
for _, block := range blocks {
status := statuses[block]
for _, insn := range block.insns {
insnUninitialized := memUninitializedReads(insn.Instruction, status)
// Check no uninitialized scratch registers are read
for scratch, uninit := range insnUninitialized.scratch {
if uninit {
return errors.Errorf("instruction %v reads potentially uninitialized scratch register M[%d]", insn, scratch)
}
}
uninitialized = uninitialized.or(insnUninitialized)
status = status.or(memWrites(insn.Instruction))
}
// update the status of every block this one jumps to
for _, target := range block.jumps {
targetStatus, ok := statuses[target]
if !ok {
statuses[target] = status
continue
}
// memory needs to be initialized from every possible path
statuses[target] = targetStatus.and(status)
}
}
// new instructions we need to prepend to initialize uninitialized registers
initInsns := []instruction{}
for reg, uninit := range uninitialized.regs {
if !uninit {
continue
}
initInsns = append(initInsns, instruction{
Instruction: bpf.LoadConstant{
Dst: bpf.Register(reg),
Val: 0,
},
})
}
blocks[0].insns = append(initInsns, blocks[0].insns...)
return nil
}
// memUninitializedReads returns the memory read by insn that has not yet been initialized according to initialized.
func memUninitializedReads(insn bpf.Instruction, initialized memStatus) memStatus {
return memReads(insn).merge(initialized, func(read, init bool) bool {
return read && !init
})
}
// memReads returns the memory read by insn
func memReads(insn bpf.Instruction) memStatus {
read := memStatus{}
switch i := insn.(type) {
case bpf.ALUOpConstant:
read.regs[bpf.RegA] = true
case bpf.ALUOpX:
read.regs[bpf.RegA] = true
read.regs[bpf.RegX] = true
case bpf.JumpIf:
read.regs[bpf.RegA] = true
case bpf.JumpIfX:
read.regs[bpf.RegA] = true
read.regs[bpf.RegX] = true
case bpf.LoadIndirect:
read.regs[bpf.RegX] = true
case bpf.LoadScratch:
read.scratch[i.N] = true