-
Notifications
You must be signed in to change notification settings - Fork 69
/
trainval.py
337 lines (271 loc) · 13.7 KB
/
trainval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# Note that our code based on the open-source code (TCNs [21], references herein use original paper numbering)
import numpy as np
from common.arguments import parse_args
import torch
import torch.optim as optim
import os
import sys
import errno
from main import *
from common.camera import *
from common.loss import *
from common.generators import ChunkedGenerator, UnchunkedGenerator
from time import time
args = parse_args()
print(args)
try:
# Create checkpoint direction if it does not exict
os.makedirs(args.checkpoint)
except OSError as e:
if e.errno != errno.EEXIST:
raise RuntimeError("Unable to create checkpoint direction:", args.checkpoint)
file_source = sys.argv[0]
dir_file = os.path.dirname(file_source)
# Loading dataset
keypoints, dataset, keypoints_metadata, kps_left, kps_right, joints_left, joints_right = load_data(args)
subjects_train = args.subjects_train.split(',')
if not args.render:
subjects_test = args.subjects_test.split(',')
else:
subjects_test = [args.viz_subject]
action_filter = None if args.actions == '*' else args.actions.split(',')
if action_filter is not None:
print('Selected actions:', action_filter)
# Preprocessing dataset
cameras_valid, poses_valid, poses_valid_2d = fetch(subjects_test, action_filter, dataset, keypoints, args.downsample)
if not args.evaluate:
cameras_train, poses_train, poses_train_2d = fetch(subjects_train, action_filter, dataset, keypoints,
args.downsample, subset=args.subset)
# creating model
model_pos_train, model_pos, pad, causal_shift = create_model(args, dataset, poses_valid_2d)
# Multi-gpu training
if torch.cuda.device_count() > 1:
print("The number of GPU: {}".format(torch.cuda.device_count()))
model_pos = model_pos.cuda()
model_pos_train = model_pos_train.cuda()
model_pos = nn.DataParallel(model_pos, device_ids=[0, 1])
model_pos_train = nn.DataParallel(model_pos_train, device_ids=[0, 1])
elif torch.cuda.is_available():
model_pos = model_pos.cuda()
model_pos_train = model_pos_train.cuda()
# Loading weight
model_pos_train, model_pos, checkpoint = load_weight(args, model_pos_train, model_pos)
test_generator = UnchunkedGenerator(cameras_valid, poses_valid, poses_valid_2d,
pad=pad, causal_shift=causal_shift, augment=False,
kps_left=kps_left, kps_right=kps_right, joints_left=joints_left, joints_right=joints_right)
print("INFO: Testing on {} frames".format(test_generator.num_frames()))
if not args.evaluate:
lr = args.learning_rate
optimizer = optim.Adam(model_pos_train.parameters(), lr=lr, amsgrad=True)
lr_decay = args.lr_decay
losses_3d_train = []
losses_3d_train_eval = []
losses_3d_valid = []
epoch = 0
initial_momentum = 0.1
final_momentum = 0.01
train_generator = ChunkedGenerator(args.batch_size // args.stride, cameras_train, poses_train, poses_train_2d,
args.stride,
pad=pad, causal_shift=causal_shift, shuffle=True, augment=args.data_augmentation,
kps_left=kps_left, kps_right=kps_right, joints_left=joints_left,
joints_right=joints_right)
train_generator_eval = UnchunkedGenerator(cameras_train, poses_train, poses_train_2d,
pad=pad, causal_shift=causal_shift, augment=False)
print('INFO: Training on {} frames'.format(train_generator_eval.num_frames()))
if args.resume:
epoch = checkpoint['epoch']
if 'optimizer' in checkpoint and checkpoint['optimizer'] is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
train_generator.set_random_state(checkpoint['random_state'])
else:
print('WARNING: this checkpoint does not contain an optimizer state. The optimizer will be reinitialized.')
lr = checkpoint['lr']
print('** Note: reported losses are averaged over all frames and test-time augmentation is not used here.')
print('** The final evaluation will be carried out after the last training epoch.')
loss_min = 49.5
# Pos model only
while epoch < args.epochs:
start_time = time()
epoch_loss_3d_train = 0
model_pos_train.train()
# Regular supervised scenario
epoch_loss_3d = train(model_pos_train, train_generator, optimizer)
losses_3d_train.append(epoch_loss_3d)
# After training an epoch, whether to evaluate the loss of the training and validation set
if not args.no_eval:
model_train_dict = model_pos_train.state_dict()
losses_3d_valid_ave, losses_3d_train_eval_ave = eval(model_train_dict, model_pos, test_generator, train_generator_eval)
losses_3d_valid.append(losses_3d_valid_ave)
losses_3d_train_eval.append(losses_3d_train_eval_ave)
elapsed = (time() - start_time) / 60
if args.no_eval:
print('[%d] time %.2f lr %f 3d_train %f' % (
epoch + 1,
elapsed,
lr,
losses_3d_train[-1] * 1000))
else:
print('[%d] time %.2f lr %f 3d_train %f 3d_eval %f 3d_valid %f' % (
epoch + 1,
elapsed,
lr,
losses_3d_train[-1] * 1000,
losses_3d_train_eval[-1] * 1000,
losses_3d_valid[-1] * 1000))
# Saving the best result
if losses_3d_valid[-1]*1000 < loss_min:
chk_path = os.path.join(args.checkpoint, 'epoch_best.bin')
print('Saving checkpoint to', chk_path)
torch.save({
'epoch': epoch,
'lr': lr,
'random_state': train_generator.random_state(),
'optimizer': optimizer.state_dict(),
'model_pos': model_pos_train.state_dict()
}, chk_path)
loss_min = losses_3d_valid[-1]*1000
# Decay learning rate exponentially
lr *= lr_decay
for param_group in optimizer.param_groups:
param_group['lr'] *= lr_decay
epoch += 1
# Save checkpoint if necessary
if epoch % args.checkpoint_frequency == 0:
chk_path = os.path.join(args.checkpoint, 'epoch_{}.bin'.format(epoch))
print('Saving checkpoint to', chk_path)
torch.save({
'epoch': epoch,
'lr': lr,
'random_state': train_generator.random_state(),
'optimizer': optimizer.state_dict(),
'model_pos': model_pos_train.state_dict()
}, chk_path)
# Save training curves after every epoch, as .png images (if requested)
if args.export_training_curves and epoch > 3:
if 'matplotlib' not in sys.modules:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.figure()
epoch_x = np.arange(3, len(losses_3d_train)) + 1
plt.plot(epoch_x, losses_3d_train[3:], '--', color='C0')
plt.plot(epoch_x, losses_3d_train_eval[3:], color='C0')
plt.plot(epoch_x, losses_3d_valid[3:], color='C1')
plt.legend(['3d train', '3d train (eval)', '3d valid (eval)'])
plt.ylabel('MPJPE (m)')
plt.xlabel('Epoch')
plt.xlim((3, epoch))
plt.savefig(os.path.join(args.checkpoint, 'loss_3d.png'))
plt.close('all')
# Evaluate
if args.render:
print('Rendering...')
input_keypoints = keypoints[args.viz_subject][args.viz_action][args.viz_camera].copy()
ground_truth = None
if args.viz_subject in dataset.subjects() and args.viz_action in dataset[args.viz_subject]:
if 'positions_3d' in dataset[args.viz_subject][args.viz_action]:
ground_truth = dataset[args.viz_subject][args.viz_action]['positions_3d'][args.viz_camera].copy()
if ground_truth is None:
print('INFO: this action is unlabeled. Ground truth will not be rendered.')
gen = UnchunkedGenerator(None, None, [input_keypoints],
pad=pad, causal_shift=causal_shift, augment=args.test_time_augmentation,
kps_left=kps_left, kps_right=kps_right, joints_left=joints_left, joints_right=joints_right)
prediction = evaluate(gen, model_pos, joints_left, joints_right, return_predictions=True)
if args.viz_export is not None:
print('Exporting joint positions to', args.viz_export)
# Predictions are in camera space
np.save(args.viz_export, prediction)
if args.viz_output is not None:
if ground_truth is not None:
# Reapply trajectory
trajectory = ground_truth[:, :1]
ground_truth[:, 1:] += trajectory
prediction += trajectory
# Invert camera transformation
cam = dataset.cameras()[args.viz_subject][args.viz_camera]
if ground_truth is not None:
prediction = camera_to_world(prediction, R=cam['orientation'], t=cam['translation'])
ground_truth = camera_to_world(ground_truth, R=cam['orientation'], t=cam['translation'])
else:
# If the ground truth is not available, take the camera extrinsic params from a random subject.
# They are almost the same, and anyway, we only need this for visualization purposes.
for subject in dataset.cameras():
if 'orientation' in dataset.cameras()[subject][args.viz_camera]:
rot = dataset.cameras()[subject][args.viz_camera]['orientation']
break
prediction = camera_to_world(prediction, R=rot, t=0)
# We don't have the trajectory, but at least we can rebase the height
prediction[:, :, 2] -= np.min(prediction[:, :, 2])
anim_output = {'Reconstruction': prediction}
if ground_truth is not None and not args.viz_no_ground_truth:
anim_output['Ground truth'] = ground_truth
input_keypoints = image_coordinates(input_keypoints[..., :2], w=cam['res_w'], h=cam['res_h'])
from tools.visualization import render_animation
render_animation(input_keypoints, keypoints_metadata, anim_output,
dataset.skeleton(), dataset.fps(), args.viz_bitrate, cam['azimuth'], args.viz_output,
limit=args.viz_limit, downsample=args.viz_downsample, size=args.viz_size,
input_video_path=args.viz_video, viewport=(cam['res_w'], cam['res_h']),
input_video_skip=args.viz_skip)
else:
print('Evaluating...')
all_actions = {}
all_actions_by_subject = {}
for subject in subjects_test:
if subject not in all_actions_by_subject:
all_actions_by_subject[subject] = {}
for action in dataset[subject].keys():
action_name = action.split(' ')[0]
if action_name not in all_actions:
all_actions[action_name] = []
if action_name not in all_actions_by_subject[subject]:
all_actions_by_subject[subject][action_name] = []
all_actions[action_name].append((subject, action))
all_actions_by_subject[subject][action_name].append((subject, action))
def fetch_actions(actions):
out_poses_3d = []
out_poses_2d = []
for subject, action in actions:
poses_2d = keypoints[subject][action]
for i in range(len(poses_2d)): # Iterate across cameras
out_poses_2d.append(poses_2d[i])
poses_3d = dataset[subject][action]['positions_3d']
assert len(poses_3d) == len(poses_2d), 'Camera count mismatch'
for i in range(len(poses_3d)): # Iterate across cameras
out_poses_3d.append(poses_3d[i])
stride = args.downsample
if stride > 1:
# Downsample as requested
for i in range(len(out_poses_2d)):
out_poses_2d[i] = out_poses_2d[i][::stride]
if out_poses_3d is not None:
out_poses_3d[i] = out_poses_3d[i][::stride]
return out_poses_3d, out_poses_2d
def run_evaluation(actions, action_filter=None):
errors_p1 = []
errors_p2 = []
for action_key in actions.keys():
if action_filter is not None:
found = False
for a in action_filter:
if action_key.startswith(a):
found = True
break
if not found:
continue
poses_act, poses_2d_act = fetch_actions(actions[action_key])
gen = UnchunkedGenerator(None, poses_act, poses_2d_act,
pad=pad, causal_shift=causal_shift, augment=args.test_time_augmentation,
kps_left=kps_left, kps_right=kps_right, joints_left=joints_left,
joints_right=joints_right)
e1, e2 = evaluate(gen, model_pos, joints_left, joints_right, action_key)
errors_p1.append(e1)
errors_p2.append(e2)
print('Protocol #1 (MPJPE) action-wise average:', round(np.mean(errors_p1), 1), 'mm')
print('Protocol #2 (P-MPJPE) action-wise average:', round(np.mean(errors_p2), 1), 'mm')
if not args.by_subject:
run_evaluation(all_actions, action_filter)
else:
for subject in all_actions_by_subject.keys():
print('Evaluating on subject', subject)
run_evaluation(all_actions_by_subject[subject], action_filter)
print('')