-
Notifications
You must be signed in to change notification settings - Fork 2
/
rs.c
544 lines (499 loc) · 14.5 KB
/
rs.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/*
* Reed-Solomon coding and decoding
* Phil Karn ([email protected]) September 1996
*
* This file is derived from the program "new_rs_erasures.c" by Robert
* Morelos-Zaragoza ([email protected]) and Hari Thirumoorthy
* ([email protected]), Aug 1995
*
* I've made changes to improve performance, clean up the code and make it
* easier to follow. Data is now passed to the encoding and decoding functions
* through arguments rather than in global arrays. The decode function returns
* the number of corrected symbols, or -1 if the word is uncorrectable.
*
* This code supports a symbol size from 2 bits up to 16 bits,
* implying a block size of 3 2-bit symbols (6 bits) up to 65535
* 16-bit symbols (1,048,560 bits). The code parameters are set in rs.h.
*
* Note that if symbols larger than 8 bits are used, the type of each
* data array element switches from unsigned char to unsigned int. The
* caller must ensure that elements larger than the symbol range are
* not passed to the encoder or decoder.
*
*/
#include <stdio.h>
#include "rs.h"
#if (KK >= NN)
#error "KK must be less than 2**MM - 1"
#endif
/* This defines the type used to store an element of the Galois Field
* used by the code. Make sure this is something larger than a char if
* if anything larger than GF(256) is used.
*
* Note: unsigned char will work up to GF(256) but int seems to run
* faster on the Pentium.
*/
typedef int gf;
/* Primitive polynomials - see Lin & Costello, Appendix A,
* and Lee & Messerschmitt, p. 453.
*/
#if(MM == 2)/* Admittedly silly */
int Pp[MM+1] = { 1, 1, 1 };
#elif(MM == 3)
/* 1 + x + x^3 */
int Pp[MM+1] = { 1, 1, 0, 1 };
#elif(MM == 4)
/* 1 + x + x^4 */
int Pp[MM+1] = { 1, 1, 0, 0, 1 };
#elif(MM == 5)
/* 1 + x^2 + x^5 */
int Pp[MM+1] = { 1, 0, 1, 0, 0, 1 };
#elif(MM == 6)
/* 1 + x + x^6 */
int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 1 };
#elif(MM == 7)
/* 1 + x^3 + x^7 */
int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 1 };
#elif(MM == 8)
/* 1+x^2+x^3+x^4+x^8 */
int Pp[MM+1] = { 1, 0, 1, 1, 1, 0, 0, 0, 1 };
#elif(MM == 9)
/* 1+x^4+x^9 */
int Pp[MM+1] = { 1, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
#elif(MM == 10)
/* 1+x^3+x^10 */
int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
#elif(MM == 11)
/* 1+x^2+x^11 */
int Pp[MM+1] = { 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
#elif(MM == 12)
/* 1+x+x^4+x^6+x^12 */
int Pp[MM+1] = { 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1 };
#elif(MM == 13)
/* 1+x+x^3+x^4+x^13 */
int Pp[MM+1] = { 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
#elif(MM == 14)
/* 1+x+x^6+x^10+x^14 */
int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 };
#elif(MM == 15)
/* 1+x+x^15 */
int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
#elif(MM == 16)
/* 1+x+x^3+x^12+x^16 */
int Pp[MM+1] = { 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1 };
#else
#error "MM must be in range 2-16"
#endif
/* Alpha exponent for the first root of the generator polynomial */
#define B0 1
/* index->polynomial form conversion table */
gf Alpha_to[NN + 1];
/* Polynomial->index form conversion table */
gf Index_of[NN + 1];
/* No legal value in index form represents zero, so
* we need a special value for this purpose
*/
#define A0 (NN)
/* Generator polynomial g(x)
* Degree of g(x) = 2*TT
* has roots @**B0, @**(B0+1), ... ,@^(B0+2*TT-1)
*/
gf Gg[NN - KK + 1];
/* Compute x % NN, where NN is 2**MM - 1,
* without a slow divide
*/
gf modnn(int x)
{
while (x >= NN) {
x -= NN;
x = (x >> MM) + (x & NN);
}
return x;
}
#define min(a,b) ((a) < (b) ? (a) : (b))
#define CLEAR(a,n) {\
int ci;\
for(ci=(n)-1;ci >=0;ci--)\
(a)[ci] = 0;\
}
#define COPY(a,b,n) {\
int ci;\
for(ci=(n)-1;ci >=0;ci--)\
(a)[ci] = (b)[ci];\
}
#define COPYDOWN(a,b,n) {\
int ci;\
for(ci=(n)-1;ci >=0;ci--)\
(a)[ci] = (b)[ci];\
}
void init_rs(void)
{
generate_gf();
gen_poly();
}
/* generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m]
lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
polynomial form -> index form index_of[j=alpha**i] = i
alpha=2 is the primitive element of GF(2**m)
HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
Let @ represent the primitive element commonly called "alpha" that
is the root of the primitive polynomial p(x). Then in GF(2^m), for any
0 <= i <= 2^m-2,
@^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
example the polynomial representation of @^5 would be given by the binary
representation of the integer "alpha_to[5]".
Similarily, index_of[] can be used as follows:
As above, let @ represent the primitive element of GF(2^m) that is
the root of the primitive polynomial p(x). In order to find the power
of @ (alpha) that has the polynomial representation
a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
we consider the integer "i" whose binary representation with a(0) being LSB
and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
"index_of[i]". Now, @^index_of[i] is that element whose polynomial
representation is (a(0),a(1),a(2),...,a(m-1)).
NOTE:
The element alpha_to[2^m-1] = 0 always signifying that the
representation of "@^infinity" = 0 is (0,0,0,...,0).
Similarily, the element index_of[0] = A0 always signifying
that the power of alpha which has the polynomial representation
(0,0,...,0) is "infinity".
*/
void
generate_gf(void)
{
register int i, mask;
mask = 1;
Alpha_to[MM] = 0;
for (i = 0; i < MM; i++) {
Alpha_to[i] = mask;
Index_of[Alpha_to[i]] = i;
/* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
if (Pp[i] != 0)
Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */
mask <<= 1; /* single left-shift */
}
Index_of[Alpha_to[MM]] = MM;
/*
* Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
* poly-repr of @^i shifted left one-bit and accounting for any @^MM
* term that may occur when poly-repr of @^i is shifted.
*/
mask >>= 1;
for (i = MM + 1; i < NN; i++) {
if (Alpha_to[i - 1] >= mask)
Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
else
Alpha_to[i] = Alpha_to[i - 1] << 1;
Index_of[Alpha_to[i]] = i;
}
Index_of[0] = A0;
Alpha_to[NN] = 0;
}
/*
* Obtain the generator polynomial of the TT-error correcting, length
* NN=(2**MM -1) Reed Solomon code from the product of (X+@**(B0+i)), i = 0,
* ... ,(2*TT-1)
*
* Examples:
*
* If B0 = 1, TT = 1. deg(g(x)) = 2*TT = 2.
* g(x) = (x+@) (x+@**2)
*
* If B0 = 0, TT = 2. deg(g(x)) = 2*TT = 4.
* g(x) = (x+1) (x+@) (x+@**2) (x+@**3)
*/
void
gen_poly(void)
{
register int i, j;
Gg[0] = Alpha_to[B0];
Gg[1] = 1; /* g(x) = (X+@**B0) initially */
for (i = 2; i <= NN - KK; i++) {
Gg[i] = 1;
/*
* Below multiply (Gg[0]+Gg[1]*x + ... +Gg[i]x^i) by
* (@**(B0+i-1) + x)
*/
for (j = i - 1; j > 0; j--)
if (Gg[j] != 0)
Gg[j] = Gg[j - 1] ^ Alpha_to[modnn((Index_of[Gg[j]]) + B0 + i - 1)];
else
Gg[j] = Gg[j - 1];
/* Gg[0] can never be zero */
Gg[0] = Alpha_to[modnn((Index_of[Gg[0]]) + B0 + i - 1)];
}
/* convert Gg[] to index form for quicker encoding */
for (i = 0; i <= NN - KK; i++)
Gg[i] = Index_of[Gg[i]];
}
/*
* take the string of symbols in data[i], i=0..(k-1) and encode
* systematically to produce NN-KK parity symbols in bb[0]..bb[NN-KK-1] data[]
* is input and bb[] is output in polynomial form. Encoding is done by using
* a feedback shift register with appropriate connections specified by the
* elements of Gg[], which was generated above. Codeword is c(X) =
* data(X)*X**(NN-KK)+ b(X)
*/
int
encode_rs(dtype data[KK], dtype bb[NN-KK])
{
register int i, j;
gf feedback;
CLEAR(bb,NN-KK);
for (i = KK - 1; i >= 0; i--) {
#if (MM != 8)
if(data[i] > NN)
return -1; /* Illegal symbol */
#endif
feedback = Index_of[data[i] ^ bb[NN - KK - 1]];
if (feedback != A0) { /* feedback term is non-zero */
for (j = NN - KK - 1; j > 0; j--)
if (Gg[j] != A0)
bb[j] = bb[j - 1] ^ Alpha_to[modnn(Gg[j] + feedback)];
else
bb[j] = bb[j - 1];
bb[0] = Alpha_to[modnn(Gg[0] + feedback)];
} else { /* feedback term is zero. encoder becomes a
* single-byte shifter */
for (j = NN - KK - 1; j > 0; j--)
bb[j] = bb[j - 1];
bb[0] = 0;
}
}
return 0;
}
/*
* Performs ERRORS+ERASURES decoding of RS codes. If decoding is successful,
* writes the codeword into data[] itself. Otherwise data[] is unaltered.
*
* Return number of symbols corrected, or -1 if codeword is illegal
* or uncorrectable.
*
* First "no_eras" erasures are declared by the calling program. Then, the
* maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
* If the number of channel errors is not greater than "t_after_eras" the
* transmitted codeword will be recovered. Details of algorithm can be found
* in R. Blahut's "Theory ... of Error-Correcting Codes".
*/
int
eras_dec_rs(dtype data[NN], int eras_pos[NN-KK], int no_eras)
{
int deg_lambda, el, deg_omega;
int i, j, r;
gf u,q,tmp,num1,num2,den,discr_r;
gf recd[NN];
gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly
* and syndrome poly */
gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
int syn_error, count;
/* data[] is in polynomial form, copy and convert to index form */
for (i = NN-1; i >= 0; i--){
#if (MM != 8)
if(data[i] > NN)
return -1; /* Illegal symbol */
#endif
recd[i] = Index_of[data[i]];
}
/* first form the syndromes; i.e., evaluate recd(x) at roots of g(x)
* namely @**(B0+i), i = 0, ... ,(NN-KK-1)
*/
syn_error = 0;
for (i = 1; i <= NN-KK; i++) {
tmp = 0;
for (j = 0; j < NN; j++)
if (recd[j] != A0) /* recd[j] in index form */
tmp ^= Alpha_to[modnn(recd[j] + (B0+i-1)*j)];
syn_error |= tmp; /* set flag if non-zero syndrome =>
* error */
/* store syndrome in index form */
s[i] = Index_of[tmp];
}
if (!syn_error) {
/*
* if syndrome is zero, data[] is a codeword and there are no
* errors to correct. So return data[] unmodified
*/
return 0;
}
CLEAR(&lambda[1],NN-KK);
lambda[0] = 1;
if (no_eras > 0) {
/* Init lambda to be the erasure locator polynomial */
lambda[1] = Alpha_to[eras_pos[0]];
for (i = 1; i < no_eras; i++) {
u = eras_pos[i];
for (j = i+1; j > 0; j--) {
tmp = Index_of[lambda[j - 1]];
if(tmp != A0)
lambda[j] ^= Alpha_to[modnn(u + tmp)];
}
}
#ifdef ERASURE_DEBUG
/* find roots of the erasure location polynomial */
for(i=1;i<=no_eras;i++)
reg[i] = Index_of[lambda[i]];
count = 0;
for (i = 1; i <= NN; i++) {
q = 1;
for (j = 1; j <= no_eras; j++)
if (reg[j] != A0) {
reg[j] = modnn(reg[j] + j);
q ^= Alpha_to[reg[j]];
}
if (!q) {
/* store root and error location
* number indices
*/
root[count] = i;
loc[count] = NN - i;
count++;
}
}
if (count != no_eras) {
printf("\n lambda(x) is WRONG\n");
return -1;
}
#ifndef NO_PRINT
printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
for (i = 0; i < count; i++)
printf("%d ", loc[i]);
printf("\n");
#endif
#endif
}
for(i=0;i<NN-KK+1;i++)
b[i] = Index_of[lambda[i]];
/*
* Begin Berlekamp-Massey algorithm to determine error+erasure
* locator polynomial
*/
r = no_eras;
el = no_eras;
while (++r <= NN-KK) { /* r is the step number */
/* Compute discrepancy at the r-th step in poly-form */
discr_r = 0;
for (i = 0; i < r; i++){
if ((lambda[i] != 0) && (s[r - i] != A0)) {
discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
}
}
discr_r = Index_of[discr_r]; /* Index form */
if (discr_r == A0) {
/* 2 lines below: B(x) <-- x*B(x) */
COPYDOWN(&b[1],b,NN-KK);
b[0] = A0;
} else {
/* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
t[0] = lambda[0];
for (i = 0 ; i < NN-KK; i++) {
if(b[i] != A0)
t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
else
t[i+1] = lambda[i+1];
}
if (2 * el <= r + no_eras - 1) {
el = r + no_eras - el;
/*
* 2 lines below: B(x) <-- inv(discr_r) *
* lambda(x)
*/
for (i = 0; i <= NN-KK; i++)
b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
} else {
/* 2 lines below: B(x) <-- x*B(x) */
COPYDOWN(&b[1],b,NN-KK);
b[0] = A0;
}
COPY(lambda,t,NN-KK+1);
}
}
/* Convert lambda to index form and compute deg(lambda(x)) */
deg_lambda = 0;
for(i=0;i<NN-KK+1;i++){
lambda[i] = Index_of[lambda[i]];
if(lambda[i] != A0)
deg_lambda = i;
}
/*
* Find roots of the error+erasure locator polynomial. By Chien
* Search
*/
COPY(®[1],&lambda[1],NN-KK);
count = 0; /* Number of roots of lambda(x) */
for (i = 1; i <= NN; i++) {
q = 1;
for (j = deg_lambda; j > 0; j--)
if (reg[j] != A0) {
reg[j] = modnn(reg[j] + j);
q ^= Alpha_to[reg[j]];
}
if (!q) {
/* store root (index-form) and error location number */
root[count] = i;
loc[count] = NN - i;
count++;
}
}
#ifdef DEBUG
printf("\n Final error positions:\t");
for (i = 0; i < count; i++)
printf("%d ", loc[i]);
printf("\n");
#endif
if (deg_lambda != count) {
/*
* deg(lambda) unequal to number of roots => uncorrectable
* error detected
*/
return -1;
}
/*
* Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
* x**(NN-KK)). in index form. Also find deg(omega).
*/
deg_omega = 0;
for (i = 0; i < NN-KK;i++){
tmp = 0;
j = (deg_lambda < i) ? deg_lambda : i;
for(;j >= 0; j--){
if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
}
if(tmp != 0)
deg_omega = i;
omega[i] = Index_of[tmp];
}
omega[NN-KK] = A0;
/*
* Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
* inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
*/
for (j = count-1; j >=0; j--) {
num1 = 0;
for (i = deg_omega; i >= 0; i--) {
if (omega[i] != A0)
num1 ^= Alpha_to[modnn(omega[i] + i * root[j])];
}
num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
den = 0;
/* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
if(lambda[i+1] != A0)
den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
}
if (den == 0) {
#ifdef DEBUG
printf("\n ERROR: denominator = 0\n");
#endif
return -1;
}
/* Apply error to data */
if (num1 != 0) {
data[loc[j]] ^= Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
}
}
return count;
}